OpenDataMonitor ‘b _7_

D3.6

PROJECT

Acronym:
Title:

Coordinator:
Reference:
Type:

Programme:

Start:

Duration:

Website:

E-Mail:

Consortium:

TOOL ARCHITECTURE AND
COMPONENTS/PLUGINS PROGRAMMING
STATUS REPORT 2

OpenDataMonitor (ODM)
Monitoring, Analysis and Visualisation of Open Data Catalogues, Hubs and Repositories

SYNYO GmbH

611988
Collaborative project

FP7-ICT

November 2013

24 months

http://project.opendatamonitor.eu
http://opendatamonitor.eu

office@opendatamonitor.eu

SYNYO GmbH, Research & Development Department, Austria, (SYNYO)

Open Data Institute, Research Department, UK, (ODI)

Athena Research and Innovation Center, IMIS, Greece, (ATHENA)

University of Southampton, Web and Internet Science Group, UK, (SOTON)

Potsdam eGovernment Competence Center, Research Department, Germany, (IFG.CC)
City of Munich, Department of Labor and Economic Development, Germany, (MUNICH)
Entidad Publica Empresarial Red.es, Shared Service Department, Spain, (RED.ES)

—

INEY IMIS S’

e°, UNIVERSITY OF ~ : :
QP & souhdmpon e [ CvofMunieh  redes




D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor r
PROGRAMMING STATUS REPORT 2 :

DELIVERABLE

Number:
Title:
Lead beneficiary:

Work package:

Dissemination level:

Nature:

Due date:

Submission date:

Authors:

Contributors:

Reviewers:

D3.6

Tool architecture and components/plugins programming status report 2
ATHENA

WP3: Concept Design and Software Development

Public (PU)

Report (RE)

August 31, 2015

August 28, 2015

Vassilis Kaffes, ATHENA
Dimitris Skoutas, ATHENA

Thodoris Raios, ATHENA
Ejona Sauli, SYNYO

Amanda Smith, ODI

Acknowledgement: The OpenDataMonitor project is | Disclaimer: The content of this publication is the
co-funded by the European Commission under the | sole responsibility of the authors, and in no way
Seventh Framework Programme (FP7 2007-2013) | represents the view of the European Commission or
under grant agreement number 611988. its services.

© 2015 OpenDataMonitor | FP7-ICT 611988




D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 2

TABLE OF CONTENTS
3 O 1Yo o [UT o 4 o T o P 7
1.1 Y ole] LI Ya Ve [ o101 g o T XY= UURRN 7
1.2 Architecture overview of the ODM platform ........ccoovciiiiieciie e 8
1.2.1 1Y/ 1T a T 0] 0 0] 0T 1= ) 3PP 8
1.2.2 Outline of the processing WOrkflow .........ccueiivciiiiiiiiiee e 10
2 CatalogUe REGISIIY ..ccccuuueiiiiiiiiiiinnniiiiiiiiiieessseeiiiiiiieessssssssienniisssssssssssssssssssssssssssssssssssssssssssss 12
2.1 Registration form for SOCrata harVester ..........ooecvie et 12
2.2 RDF support for the HTML harvester ........cocuiii ittt 13
2.3 Handler for HTML pages where JavaScript snippets are used for paging..........ccccoceeeecuneennn. 15
2.4 Other enhancements and Modifications..........ccoueiiviiiii e 17
3 Metadata Harvester........ . iiiiiiiiieeneiiiiiiiiiiieeseiiiniiinesssssiiisiiimsssssssssisssiisssssssssssssssssssssssssssss 20
3.1 SOCTAtA NAIVESTEL ..eiiiiiiie e s e e st e e s be e s e b ee e s sabeeeesaneeas 20
3.2 HTML harvester ENhanCemMENTS ......ccciciiiiiiiiiie ettt e e e e sree e e e e e e sanes 21
3.21 Ability to process RDF CONtENT ......oooeiiiiiieec ettt e e e e e e e e 21
3.2.2 Ability to process JavaScript COUE ....coivmiiiiiiiiiiiiie e e 22
3.2.3 Assessment of @NhANCEMENTS.........iii i e 24
4 Harmonisation ENGINe.......ccceiiiiieuiiiiiineiieiienniciienseiismeisiisnesstissesssssssssssssssssssssssssssssssssssssnnnss 28
4.1 De-duplication MOAUIE.......ccuviii e e e e 28
4.2 HarmMONIZAtiON PrOCESS. .. .uuueeiiieieiiiiiiitieitreirrrrrrrerrre e ee e e rerereeereeeeeeeeeeeaeaeaeeeaasaeasasaeeees 34
4.3 Levels of applied MaPPiNgS ...ueeiiiiiiie ittt e e e sbre e e e sbee e s e rre e e e sarees 36
LI Vo 11 L T T 38
6  Administration Panel .........ccooiiiiiiiiiiiiiiiiiiiiiiiirss s s ssssaeassaas 39
6.1 [ YRV SE A TaY = o F- o= TP SRR 39
6.2 GENEral OVEIVIEW PANEI w.iiiiiii ittt et e e e e e e rae e e e e e e e anbraeeeeeeessantssaeeeaessnnnes 40
6.3 Harmonization PANEl........ccceiee it e e re e e et e e e rabe e e e eate e e e rre e e e araas 42
7  Conclusions and NeXt SEEPS ....ccccuuiiiiiiiiiiiiinmiiiiiniiiiieniiniiieessssiiintiiresssssisstisssssssssssss 46

© 2015 OpenDataMonitor | FP7-ICT 611988 3



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 2

8  APPENDIX .. uuiiiiiiiiiiiiiiiisiiissisissssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnes 48
8.1 T 0 0] 0] L= PRSP 48
8.2 (0o Yo 1] o110 o 1= £ R 52

© 2015 OpenDataMonitor | FP7-ICT 611988 4



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 2

LIST OF FIGURES

Figure 1: Overview of architecture and processing WOrkflow. .........cccovereiiiie e, 8
Figure 2: Additional option for registering a catalogue using the Socrata platform. .......cccccocevvvnneenn. 12
Figure 3: Web form for configuring the harvester for the registered catalogue. .........cccccvvverrrnnnneee. 14
Figure 4: Option to provide link to metadata available in RDF format. .......c.ccccocoveeiiiiiee e 15
Figure 5: Configuring page navigation in the case of JavaScript code. ........cocceeivvieiiiiiiee e, 16
Figure 6: Example of configuring page navigation when JavaScript code is used. ........cccceecuvveeevcrnennne 17
Figure 7: Allowing multiple URLs as starting pages for metadata collection within a catalogue. ........ 18
Figure 8: Example of added validation checks in the catalogue registration form...........ccccoveeenneennn. 19
Figure 9: Link to RDF description of a dataset’'s metadata. ......cccccueeeeeiieeiiiiiie e 22
Figure 10: Distribution of catalogues handled by each harvester type. ......ccccceveieeiiiiiieeiccieee e 24
Figure 11: Portion of catalogues handled by the HTML harvester using Javascript code. ................... 25
Figure 12: Number of datasets collected from the monitored catalogues.........ccoceeeeecvveeeeiiieeecciieeeenns 25
Figure 13: Availability of each metadata attribute in the collected datasets. ........cccecvveiiiciveeeicieennnns 26
Figure 14: View of the database for metadata collection and processing.......cccccceeevvcveeeviiieeencveennnns 27
Figure 15: Flow chart for the indexing phase of the de-duplication process........cccccceeeccivveeeeeeeccnnneen. 29
Figure 16: Flow chart for the searching phase of the de-duplication process.........cccccoveeeeecieeercieeennns 33
Figure 17: Example of duplicate metadata 0bjects......ccceviiiiiiiiiiie e 34
Figure 18: Example of harmonization job. ... 36
Figure 19: View of the harvesting Pane€l............oouiii it e et e e e 39
Figure 20: View of the admin Panel. ........cooiiiiiiii et rae e e 40
Figure 21: View Of the JODS tab. ......coiiiiiiiiiic ettt et stee e s are e e e ree e s et 40
Figure 22: View of the general overview Panel.......coiiiiii e 41
Figure 23: Dashboard view of the harmonization panel...........ccccueii i 42
Figure 24: Example view of the harmonization Panel.......ccccceeieciiiei e 43
Figure 25: Example of VIieWing Mapping FUIES. ........coiiiiii ittt e e e e sbee e e 44
Figure 26: Example of @diting FUIES. ......veeeii i rrre e e e e e e ra e e e e e e 45

© 2015 OpenDataMonitor | FP7-ICT 611988 5



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 2

LIST OF TABLES

Table 1: Decision table to label metadata as Candidate or UniQue ............ccccuvueeeeeeiiicciiieeeeeeeeecieneen, 31
Table 2: A Socrata JSON doCUMENT INSTANCE......cvviiiiiiiie e e e s naee e e 48
TabIe 3: RDF @XAMPIE. . ..eeeiiiieeee ettt e e et e e e e e e e et te e e e e e e eeastaaaeeeeeeessstasaeeeesesanstssaeeeassanns 49
Table 4: Example of the partialOrder.csv fill@ ... e 50
Table 5: Select harvester type for registration..........cccueeiiiiiie i e 52
Table 6: Select configuration rules to apply in harvesting process.......cccocvevercieeiceciee e 52
Table 7: Select available options to parse successive pages with HTML harvester.........cccccceeecvvvnene.. 53
Table 8: Parsing multiple URLs provided as landing pages in a catalogue.........ccccceeevecvieeeeeeeeccnnnneen, 54
Table 9: Form validation checks for empty and incorrect values .........cccocuveeeeiieeicciiee e, 55

Table 10: Fields, language and country, defined as drop-down button in HTML harvester’s

(T I =Y [o] oI o] o o PRSP 56
Table 11: Declare lists for languages and countries as helper functions...........ccccceeeceeeeeceeeccieee e, 57
Table 12: Initialize lists with default language and country values.........ccccveeivieiieciiee e 57
Table 13: QUANTITY METIICS uuviiiiiiieiieeee et e e e e rre e e e e e e esbraaeeeeeeeesttraaaeseeesasssrasaeeeenans 58
Table 14: QUAILY MELIICS ..uvviiiee i ettt e e e e e eeeate e e e e e e e esnbtaaeeeeeeessansrasaeeaeesasnseraseeaeaaans 58

© 2015 OpenDataMonitor | FP7-ICT 611988 6



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 2

1 INTRODUCTION

1.1 Scope and purpose

Recognising the increasing availability of open data and the interest for their exploitation, the
OpenDataMonitor (ODM) project has designed and developed a platform
(http://opendatamonitor.eu) that will enable interested stakeholders to gain an overview of this
evolving open data “landscape”. To that end, the research and development activities undertaken

throughout the ODM project, focus on the main directions outlined below:

e facilitating and automating the collection of metadata from open data catalogues via an
extensible and customizable harvesting framework;

e cleaning and integrating the raw collected metadata, overcoming the high heterogeneity of
schemas, values and formats found in the various open data sources, via an integration and
harmonisation workflow;

e allowing users to browse and explore the results in an intuitive and user-friendly way,
obtaining a comprehensive overview of the collected information, via the computation and
visualisation of various metrics and comparative reports.

This document focuses on the overall architecture of the ODM platform, and specifically it reports
the status of the implementation for each of the main components involved. It constitutes a follow-

up of the respective Deliverable D3.3 (which covered the work up to M12 of the project), presenting

the extended and new functionalities added to the ODM platform components during the second

year of the project.

Thus, for completeness, in the rest of this section we briefly outline the overall architecture and the
main components of the ODM platform. Then, throughout Sections 2-6, we present and explain the
progress of the design and development work undertaken in each of the main components, namely
the catalogue registry, the metadata harvester, the metadata harmonisation engine, the analysis
engine, and the administration panel, respectively. Finally, Section 7 summarises and concludes the

report.

© 2015 OpenDataMonitor | FP7-ICT 611988 7



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor P
PROGRAMMING STATUS REPORT 2

1.2 Architecture overview of the ODM platform

1.2.1 Main components

Open Data Catalogues ===

Extracted
Metadata

‘Metadata
Collection
Module Metadata
Harvesters
@ » @ '
L I » . JobQueue |
Data Catal.ogue e
Publisher | Registry Job Manager
: Job

Configuration

Metadata (6) (5)
. = i = -
Processing = e ;
Module = —
; Raw Metadata
Staging Area Repository
. R ™
E' D Metric |
i Definitions
Attribute s
Mappings L__../
R N~ ) Queries /
— Scripts
= Processed | |
Value Harmor.:lzatlon Metadata . S
'Mappings ~ Scripts Repository Analysis
A Engine
Harmonization (8)
Engine i
Administration Panel Demonstration Site

ODM ” PA‘ .III Data

" | Consumer

Visualisations / Reports Engine

Figure 1: Overview of architecture and processing workflow.

© 2015 OpenDataMonitor | FP7-ICT 611988 8



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 2

Figure 1 shows an overview of the ODM platform architecture, presenting the main components and

illustrating the metadata processing workflow, as was initially designed in the beginning of the

project and presented in Deliverable D3.3. The progress of the work throughout the second year of

the project has adhered to this architecture, without any major changes or deviations.

Below, we briefly outline the main modules and components comprising the ODM platform:

e Metadata collection module. This module is responsible for collecting metadata from a list

of registered open data catalogues. It consists of the following main components:

(0]

(0]

Catalogue registry. 1t allows the registration of catalogues for harvesting and
monitoring. Registration is done via a Web-based User Interface (Ul), where a form is
completed with basic information about the registered catalogue, as well as some
additional information that is needed in order to setup and configure the respective
harvesting process for this catalogue (See section 2 for detailed information). This
information provided during the registration step forms the catalogue profile and is
stored in the catalogue registry.

Job manager. The Job Manager schedules the execution of harvesting jobs,
periodically or on demand, and is responsible for monitoring their process and
reporting the status of execution. A harvesting job is a task that collects metadata
from a registered open data catalogue. It provides the required configuration that
drives the harvesting process (e.g., which harvester to use and a set of metadata
extraction rules to be applied). Harvesting jobs are maintained in a queue and are
scheduled for processing.

Metadata harvesters. These are scripts executed by harvesting jobs in order to
perform the actual extraction of metadata from the respective catalogue. Different
harvesters are implemented and used to address the different open data platforms
and APIs that exist. The configuration included in the harvesting job specifies which
harvester should be used and how.

e Metadata processing module. This module performs the cleaning, integration and analysis of

the metadata that are extracted from the various catalogues that are being monitored. It

consists of the following main components:

(0]

(0]

Harmonisation engine. It processes the raw, original metadata that were retrieved
by the harvesters and performs cleaning and integration tasks required to obtain a
homogenized dataset in terms of both attribute names and attribute values.

Analysis engine. Once the collected metadata have been mapped to a consistent
internal schema and representation, the analysis engine performs the required
operations (e.g. aggregations) in order to compute the metrics that have been
defined for monitoring (Refer to D3.7 for detailed information). It also makes these
results available to the demonstration site for visualisation and presentation to the
end users.

© 2015 OpenDataMonitor | FP7-ICT 611988 9



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 2

e Demonstration site. This module comprises several components for generating intuitive
visualisations and reports that are presented to the end users, allowing them to obtain a
comprehensive overview of trends in the evolving open data landscape, based on the
monitored open data catalogues.

e Administration panel. This module comprises a set of dashboards that allows the ODM
system administrator to monitor, control and configure various aspects of the system’s
operation (e.g., configure options for metadata collection, monitor the status of harvesting
jobs, define rules for metadata harmonisation, specify templates for visualisations).

This report focuses in more detail on the first two modules, i.e. the metadata collection and
metadata processing. For a more detailed description of the demonstration site, and a report on the

status of its implementation, see Deliverable D3.4 and forthcoming deliverable D3.7.

1.2.2 Outline of the processing workflow

Next, we describe the main steps of the processing workflow. These steps are also illustrated in
Figure 1 (see numbered arrows). As noted above, this workflow was first designed and presented in
D3.3, and has also been followed throughout the subsequent development efforts in the second

period of the project without any major changes or deviations.

Step 1: Catalogue registration. The first step of the process is to register a new open data catalogue
for monitoring. This is done via a Web-based Ul, which presents a form requesting several attributes
that have to be filled in order to indicate the profile of the catalogue and to guide the metadata

extraction process.

Step 2: Creation of harvesting job. Once a new catalogue is registered for monitoring and its profile
is filled in, a corresponding harvesting job is created, configured and submitted to the Job Manager.

The Job Manager inserts the job in the queue and schedules it for execution.

Step 3: Triggering of harvesting job. Periodically and/or on demand (as specified during a catalogue’s
registration), the Job Manager de-queues a harvesting job and initiates its execution. This is done by
invoking the appropriate Metadata Harvester and using the configuration properties specified in the

description of the job.

Step 4: Metadata extraction. The invoked Metadata Harvester applies the configured extraction
rules to retrieve the relevant metadata. The extracted metadata are stored in the Raw Metadata
Repository. During this step, some preliminary actions for cleaning and integrating the metadata also
take place. For example, by applying the specified extraction rules, some of the collected metadata

are mapped to the internal representation.

Step 5: Staging of collected metadata. The raw collected metadata are heterogeneous and hence
need to undertake a series of cleaning and harmonisation operations before they become available

for further analysis and use. Nevertheless, for provenance reasons, it is desirable to also keep the

© 2015 OpenDataMonitor | FP7-ICT 611988 10



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 2

original metadata. For example, this can be useful if needed to trace back the initial form of a
processed item or if some steps of the cleaning and harmonisation need to be re-executed (e.g.
because new/improved cleaning or harmonisation rules have been configured). Thus, before further

processing takes place, the collected metadata are moved to the Staging Area.

Step 6: Metadata cleaning and harmonisation. Once moved to the staging area, a series of cleaning
and harmonisation operations is executed in order to transform the initial metadata to a consistent,
internal representation. This applies to both attribute names and values, and involves tasks such as
mapping attribute names from other schemas to the internal one, validating and normalising
different date formats, normalising names of file formats, licence titles, etc. The final results are

stored in the Processed Metadata Repository.

Step 7: Metadata analysis. After the cleaning and integration steps have been performed, the
metadata become available to the Analysis Engine. This applies the necessary aggregations or other

computations to calculate the key metrics that have been defined for monitoring.

Step 8: Accessing the results. Finally, the results are made available through an APl to other
components, in particular to the Demonstration Site (www.opendatamonitor.eu), which produces
various charts, visualisations and reports for the end user. The APl provides both the metadata
records themselves (e.g. all the metadata of the datasets in a given catalogue), as well as aggregate

results for various metrics (e.g. the number of datasets uploaded in the previous month).

© 2015 OpenDataMonitor | FP7-ICT 611988 11



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 2

2 CATALOGUE REGISTRY

The Catalogue Registry is the component through which new open data catalogues are registered for
monitoring. During the second period of the project, the functionality of this component has been
enhanced by both updating and extending tools implemented during the first year of the project and
by implementing new tools and functionalities to overcome difficulties that arose in the workflow
process and to cover new needs and requirements that came up. More specifically, the main changes

can be outlined as follows:

e added a registration form for the newly included Socrata® harvester
e added RDF support for the HTML harvester
e added a handler for HTML pages to use pagination in JavaScript snippets

e implemented various minor modifications to cover derived requirements

Next, we present the work done in the Catalogue Registry in more detail.

2.1 Registration form for Socrata harvester

The set of harvesters supported by the ODM platform was extended to include also a harvester for
Socrata catalogues. This decision was made because the Socrata platform is widely used in hosting
catalogues with open data. Once the Socrata harvester was included, the catalogue registration
process was updated to include this new option, as shown in Figure 2. Details about the

implementation of the Socrata harvester are provided in Section 3.1.

Custom MetaHarvest Sources

Source type:
=) CKAN [ SOCRATA

I HTML

Next

Figure 2: Additional option for registering a catalogue using the Socrata platform.

In Table 5, we list the code snippet that registers the existing options for available harvesters in our
platform’s registration form. In order to include a new harvester, we simply need to modify the code

to provide a new radio button. This radio button should contain a descriptive name for the harvester

! http://www.socrata.com/

© 2015 OpenDataMonitor | FP7-ICT 611988 12



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 2

and the path where it is actually installed in the server. A minimum requirement is that any new
harvester should implement the template provided by the ckanext-harvest. The code snippet
listed in Table 5 is part of the ckanext-htmlharvest CKAN plugin, which is publicly available
under https://github.com/opendatamonitor/ckanext-htmlharvest, specifically in
templates/snippets/add_htmlharvest button.html.

When the CKAN/Socrata harvester option is selected, the user is transferred to the corresponding
form where the needed information is filled in to subsequently configure the harvester to collect the
metadata. As shown in Figure 3, the form comprises the same fields as the one for the harvester
used for CKAN platforms. This is in order to achieve a consistent template for the process. Thus, the
details for the fields included in the form and how to fill them are as described in D3.3 (in particular,
Section 3.1). This also explains why both the CKAN and the Socrata harvester options are listed

together in the registration form.

Nevertheless, since the two harvesters rely on a completely different mechanism underneath to
collect metadata from the corresponding catalogues, we need to indicate this in the harvest job that
will be created after filling in appropriately the Web form. For this purpose, the Source type option is
provided in the form. Hence, in this second configuration form, apart from providing and configuring
the rules for collecting metadata, we choose also the harvester instance to be used, between CKAN
or Socrata (the HTML button in this case is disabled). Afterwards, the Job Manager creates the

appropriate harvester instance according to the provided configuration options.

2.2 RDF support for the HTML harvester

Some catalogues provided the metadata of the listed datasets in RDF format. This is very useful, since
it can facilitate and make more reliable the metadata collection process, compared to extracting the

metadata from the HTML source code of the page describing the dataset.

For this purpose, the HTML harvester was extended to support collecting metadata in RDF format. As
described above, the registration form comprises two successive parts: the first is used to fill in
general information related to the catalogue, whereas the second is used to configure rules based on
the input from the user. However, instead of defining each metadata attribute we need to harvest
separately, the form is enhanced with a new capability, namely the option to provide the RDF link to
each dataset’s metadata, as shown in Figure 4. This simplifies the process of defining rules to extract
metadata from HTML pages, whenever it is supported by the catalogue. Specifically, we need to
provide the label that is used in the HTML page to describe the link that contains the metadata of a

certain dataset in RDF format.

© 2015 OpenDataMonitor | FP7-ICT 611988 13



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor

PROGRAMMING STATUS REPORT 2

Catalogue URL:

Creation Date:

Last Update Date:

Language:

Country:

Title:

Description:

Source type:

Update
Frequency:

Configuration:

Create Harvest Source

English j

United Kingdom j

URL: 83.212.122.164/harvest/<harvest-source> | Edit

You can use Markdown formatting here

" CKAN @
(=) Socrata @

T HTML @

Manual j

{

"api_version": 1,

"default_tags™[l,

"default_groups™[™],
"default_extras™:{"new_extra":"Test","harvest_ur|":"
{harvest source urll/dataset/{dataset id}"}.

Figure 3: Web form for configuring the harvester for the registered catalogue.

' o

During the fetch stage of the harvesting process, we choose which type of rules is used for the

metadata extraction. Here, we either use the link to RDF-based metadata, if available, or specific

rules provided by the user for each of the supported metadata attributes. In Section 3.2.1, we explain

how this part of the harvester works, and ways to further extend it in the future.

© 2015 OpenDataMonitor | FP7-ICT 611988

14



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 2

Create Custom MetaHarvest Source
Metadata to Harvest

Title:
Description:

Feature: Label j
Frequency:

Feature: Label j
RDF Path:

Figure 4: Option to provide link to metadata available in RDF format.

2.3 Handler for HTML pages where JavaScript snippets are used for paging

Another issue that was prohibitive in using the HTML harvester for metadata extraction in some
catalogues was the use of JavaScript for certain operations in the respective HTML pages, e.g. for

navigating or for presenting a dataset’s metadata. Next, we explain how this problem was addressed.

Certain catalogues do not provide a static way to navigate through paging and to collect all dataset
URLs pointing to their metadata. One such example is the Multicouncil Open Data catalogue:

http://opendata.cloudbcn.cat/MULTI/es/catalog/. If we try to identify a pattern to automatically

navigate through all pages, we get something like this: javascript: doPostBack("
ctloo$ContentPlaceHolderl$DataPagerli$ctlO1$ctlOl™," ). This denotes that
JavaScript code is used, which prevented the HTML harvester from automatically navigating to

subsequent pages beyond the first one.

© 2015 OpenDataMonitor | FP7-ICT 611988 15



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 2 -

# / Harvest Sources / Create Custom MetaHarvest Source

© what's Catalog
Registry?

Catalogue URL:

You can use Markdown formatting here

Config handlers for
JavaScript snippets Step:

Button Identifier:

Action Type:

Figure 5: Configuring page navigation in the case of JavaScript code.

As a result, the registration form for the HTML harvester was changed accordingly to handle pages

containing JavaScript snippets. Figure 5 displays the two fields that need to be filled in. Now, instead

of providing the Step value that is the part of the URL that two successive static HTML pages differ

on, the user needs to provide the following information:

Button identifier: this is the tag, numbers or set of characters that is placed on links used for
paginating (in Figure 6, it is one of the numbers 2,3,4,5 or Siguiente)

Action Type: in this dropdown menu, we choose the identifier used in the HTML code to
describe the above tag. The accepted values are: id, class and link. However, we must
carefully choose an identifier that uniquely describes the above selected tag. Otherwise the
reverse process of recovering the marked tag from the source code will be ambiguous. To
find it, we need to mouse hover onto the tag we chose in the previous step and go to the
source code of the page. For instance, in Firefox, we can perform this by using the built-in
source code editor. It is called Inspect Element (Q) and can be found in the context-menu of
the right-click mouse operation. In our example, as we see in Figure 6, the identifiers that
could be used to refer to the Siguiente element is either class or href (link in our case).
Nevertheless, we choose the href type to describe our element since the class type is used,
for both Siguiente and "javascript:__doPostBack('ctl00SContentPlaceHolder1SDataPagerl
Sctl025ctlo1’,")" element, with the exact same content, i.e. nextprevious.

The configuration provided in the registration form is used in the gather stage of the HTML harvester.

The selection to use or not the JavaScript way of finding all the pages that contain the actual URLs of

© 2015 OpenDataMonitor | FP7-ICT 611988 16



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 2

hosted datasets is based on whether or not certain fields are filled in or not, as we can see in Table 7.

This is discussed in more detail in Section 3.2.2.

Altas por nacimiento en el padrén, por nacionalidad y sexo (2 Ayuntamientos) Formatos disponibles

ODATA

2345 .. Ultima

Ultima actualitzacion 03/06/2015

OPENDATA - PORTAL DE DATOS ABIERTOS MULTIAYUNTAN

ICl 3 Inspector > Console @ Debugger | [ Style Editor | @ Performance | = Network
L4 div.wrapper div.main_content div.content_box div#ContentPlaceHolderl_PanelResultSearc... div.paginate span# ContentPl3

<span class="selected_number"></span>
<a class="number" href="javascript:__doPostBack('ctl@85ContentPlaceHolderisDataPagerisctlaisctlol’,
<a class="number" href="javascript:_ doPostBack('ct1085ContentPlaceHolderisDataPageriSctleisctloz’
<a class="number" href="javascript:__doPostBack('ctl@8%ContentPlaceHolderisDataPagerisctlaisctlas

<a class="number" href="javascript:__doPostBack( 'ctlﬂﬂSContentPlaceHolderlSDataPagerlsctlﬂlSctlﬂd':. j":-q,’a:-
<a href="javascript:_ doPostBack('ctle85ContentPlaceHolderi$DataPager15ctl015ctlas’, ') "s>efa>
» <a class="nextprevious" href="javascript:_ doPostBack('ct188$ContentPlaceHolder1SDataPager15ct1025ct1a0’, ') "></a>

<a class="nextprevious" href="javascript:__doPostBack('ctl@esContentPlaceHolderiSDataPager15ctlo25ctlol’, ') "s</fa>
</span>
L3

Figure 6: Example of configuring page navigation when JavaScript code is used.

2.4 Other enhancements and modifications

Many catalogues, which do not provide any APl compatible to the currently available harvesters in
the ODM platform, are harvested via the HTML harvester. One case that came up in practice was
catalogues that do not expose their datasets under a root landing page hierarchically, but instead
present the available datasets in groups based on custom criteria (e.g. category) where more than

one levels of searching are required to access the actual metadata for harvesting.

For instance, the Roma Capitale open data catalogue (http://dati.comune.roma.it) provides the

datasets under the http://dati.comune.roma.it/download URL, grouped in 11 categories. Thus, to

collect the metadata we are interested in, we need to follow each one of the above clickable groups.

To achieve this, we modified the Catalogue URL field in the HTML harvester form (see Figure 7) to
allow for providing more than one URLs, separated with commas. This way, the harvester will now
parse all provided URLs to successively collect the metadata. This extension enabled us to support an
additional number of catalogues, without any significant impact on the already existing code. In
Table 8, we see that no change was needed in order to parse each of the provided URLs in the
Catalogue URL field. This is because the Catalogue URL input from the form is stored in the variable
cat_urls that is an array. To parse its content a While loop is used, thus allowing to handle any

number of inputs. However there was a change in the way that the content of the text attribute in

© 2015 OpenDataMonitor | FP7-ICT 611988 17



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 2

the form is parsed. Again in Table 8, we check if the splitting delimiter exists (in our case, a comma,

since by default no URL contains that) and proceed respectively.

/ Create Custom MetaHarvest Source

Catalogue URL:  http://dati.comune.roma.itfdownload/incidenti-stradali,
http://dati.comune.roma.it/download/popolazione-e-societa,
http://dati.comune.roma.it/download/economia-e-lavoro,
http://dati.comune.roma.it/download/esercizi-commerciali,
http://dati.comune.roma.it/download/istruzione-e-formazione
htto:f/dati.comune.roma.it/download/cultura-e-soort.

You can use Markdown formatting here

Step:

Button Identifier:

Figure 7: Allowing multiple URLs as starting pages for metadata collection within a catalogue.

Another change was to apply validation rules that check if the information provided by the user in
the registration form for the HTML harvester adheres to some basic constraints. As already described
in Deliverable D3.3, the HTML harvester is configured through completing the catalogue registration
in two steps. During the first step, we provide information related to the catalogue itself. In the
second step we construct rules based on user input regarding how to access the metadata. Some of
these fields, namely the Catalogue URL, the Dataset’s URL and the Title, are mandatory before
proceeding to the second page. We added code to check for this constraint; in case any of the above
information is missing or invalid, a red label with an error message is displayed to the user, as shown
in Figure 8. This ensures that all information for each successfully registered catalogue will have

undergone a basic validation check before completing the registration process.

In the CKAN platform, we can easily integrate validation rules in a Web form. The render function is
used to create HTML instances from existing templates. This function takes two arguments as input.
The first one is the path to the template and the second one is a variable called extra_vars. The
extra_vars variable is a dictionary with two keys: ‘data’ and ‘errors’. The ‘data’ key is used to pass
information between different templates in the platform, while the ‘errors’ key is used to include
validation errors related to field values of a specific form. So, as shown in Table 9, we can assign to
the errors key of the extra_vars variable information related to entries with missing values. Thus,

when we call the render function, the web form will contain a red caption with errors and missing

© 2015 OpenDataMonitor | FP7-ICT 611988 18



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 2 -

values. Therefore, in case we want to extend the validation rules for a form, we need to update the

extra_vars variable with the specific rules.

Create Custom MetaHarvest Source

The form contains invalid entries

nvalid Catalogue URL, Invalid Dataset's URL, Invalid Title

Catalogue URL:

You can use Markdown formatting here

Step:

Figure 8: Example of added validation checks in the catalogue registration form.

Finally, we added drop-down menus in all harvesters’ registration forms related to: Language and
Country, as shown in Figure 3. This was included in order to allow collecting some more detailed
information for the catalogue during its registration. The alternative, as was initially planned, was to
automatically extract this kind of information during the metadata extraction; however, only a few
datasets actually contain such information. Thus, we decided to collect it explicitly during new
catalogues’ registration, since the additional effort required by the user is negligible, while allowing
to avoid errors and to increase the accuracy and credibility. The relevant code snippets in Python are
listed in Table 12. We initialized the above lists with a set of values for European countries® and
languages®. Afterwards, we declared them as helper functions® (see Table 11), in order to be used
within the templates of the ODM platform. Finally, these functions where used in each of the
registration forms to enable the drop-down buttons with available values (see Table 10, presenting

such a declaration for the HTML harvester).

? http://www.countrycallingcodes.com/iso-country-codes/europe-codes.php
3 http://publications.europa.eu/code/en/en-5000800.htm
* http://docs.ckan.org/en/847-new-theming-docs/template-helper-functions.html

© 2015 OpenDataMonitor | FP7-ICT 611988 19



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 2

3 METADATA HARVESTER

The ODM platform comprises a set of harvesters which are responsible for performing the task of
metadata extraction from the registered catalogues. During the first period of the project, we
focused on adapting a CKAN plugin for retrieving metadata from CKAN-based catalogues, as well as
on designing and developing a generic harvester that extracts metadata from the HTML source code
of the pages describing a catalogues’ datasets (see Deliverable D3.3 for details). During the second
period, we have included a Socrata harvester in the list of available harvesters, and we have also
implemented various additions and enhancements on the HTML harvester. We describe these

aspects next.

3.1 Socrata harvester

This harvester is based on the socrata-harvester extension®, which allows a host CKAN instance to
collect and import metadata information from datasets hosted on a catalogue built on the Socrata
platform. For this purpose, we used Socrata’s built-in SODA API to find the metadata we need to
harvest. This extension is based on the harvest template provided by the ckanext-harvest extension®.
Thus, the harvesting process follows the same procedure as the other harvesters, comprising the

following main steps:

1. gather: the /api/dcat. json page, suffix to the base URL of the catalogue, is accessed
which gives the list of all dataset IDs in the catalogue

2. fetch: through the SODA API, the metadata for each of the above dataset IDs in the list are
retrieved

3. import: all retrieved metadata are stored in the internal database of the host CKAN instance;
In this step, we apply the mappings to our internal schema.

In our case, we have modified the import step of the process, since we are interested in storing the
collected metadata not in the database used by CKAN but in our own database, the Raw Metadata
Repository (see Figure 1), which is essentially a collection of JSON documents stored in a MongoDB
database. This involves also some content manipulation to replace certain special characters or

keywords that are not allowed when importing the data in the database.

Another change concerns the fact that the socrata-harvester extension does not handle
properly duplicate metadata records during harvesting. So, firstly, we query the database and
retrieve all stored metadata ids related to a specific catalogue. Then, after we harvested the new

metadata from the catalogue, we compare each of the collected ids with the ones retrieved from the

> https://github.com/socrata/socrata-harvester
6 https://github.com/ckan/ckanext-harvest

© 2015 OpenDataMonitor | FP7-ICT 611988 20



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 2

database. Records with new ids are directly stored in the raw metadata repository. For each existing
id, we replace older ones with new ones and we change the field metadata_updated to the date
that a harvesting process runs. This way, we avoid having any duplicates, and also all the metadata

records are updated and synchronised to the metadata hosted in the original catalogue.

A sample JSON document containing the metadata of a dataset retrieved by the Socrata Harvester is

shown in Table 2.

3.2 HTML harvester enhancements

Throughout the course of the project, as more catalogues were being registered and added for
harvesting, some issues came up requiring improvements and enhancements on the HTML harvester.
Some of these have already been partially mentioned in Section 2. These improvements enabled us
to increase not only the number of new catalogues (for more visit the online platform) covered but
also the accuracy of the harvesting process. In what follows, we present in more detail the changes

and improvements made in the way that the HTML harvester operates.

3.2.1 Ability to process RDF content

RDF is a general purpose data model to describe information on the Web. Although many catalogues
do not provide an APl compatible to what was already supported by the ODM platform, they do
publish metadata about their datasets in RDF format. Thus, we decided to enhance the HTML
harvester’s functionality to increase its accuracy and completeness, by enabling it to collect and

process metadata in RDF format, when available, instead of relying on HTML scraping.

In this case, the overall metadata collection and processing still follows the general steps described in
D3.3; however, instead of defining rules for each of the attributes to harvest, we use the RDF
description. Figure 9 shows one such example from the Loire-Atlantique open data catalogue

(http://data.loire-atlantique.fr /accueil). For this example, the RDF content can be seen in Table 3.

We can see that all information contained in the HTML page is structurally presented in the RDF link.
Afterwards, we parse the content with the xmltodict’ Python library, which manipulates the XML
content as JSON. Finally, we need to map every extracted attribute and its value to our internal
schema. Default mappings have been included for the case that the RDF description of the metadata
follows the DCAT vocabulary. If that is true, the mappings are applied automatically and the process

of harvesting is successfully finalized. Otherwise, there is a need to include custom mapping rules to

" https://pypi.python.org/pypi/xmltodict

© 2015 OpenDataMonitor | FP7-ICT 611988 21



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor r
PROGRAMMING STATUS REPORT 2 |

the catalogue’s schema. In that case, the code that needs to be changed is in the file

RdFfToJson. py, which is available in the project’s Github repository®.

hoix des formats Fonchonnement

1%
U
S

a

Annvuaire des associations et des activités de
Nantes

Publié 02/09/2014 - Télécharge 976 fois Licence : Open Database License (ODbL)

| En cochant cette case pour télécharger le fichier,

. e j'accepte les CGU et les conditions de la licence

DeSCFlpthﬂ Consulter les conditions générales d'utilisation
(CGU) et la licence

Accéder aux données

Les données sont constituées des associations dont le siége ou l'une au moins des activités est situé(e) sur
le territoire de la ville de Nantes. @ valider

Les données renseignent sur les coordonnées des associations, les activites qu'elles proposent, les publics
concernés ainsi que les lieux dans lesquels les activités se déroulent.

La méme association peut apparaitre plusieurs fois dans la liste si elle propose plusieurs activités. Un lieu
d'activité distinct peut alors &tre associé & chacune de ces activités.

Par ailleurs, seules les associations ayant autorisées la diffusion de leurs informations sur le site Web de la e Documentation
ville de Nantes figurent dans les données fournies. Api: Ac 3 la documentation

Métadonnées : Accés au format RDF

Localisation des équipements publics relevant de la
catégorie 'Vie associative' de Nantes

Enfin, le site hitpfwww.nantes r vous permet également d'accéder aux donnees de cet annuaire via un outil
de recherche.

Thématique(s) : Citoyenneté / Institution
Mots clés : associatif, ESS, annuaire, association

Territoire concerné :  Nantes

Période couverte : Sans objet Concours attribués par la Région des Pays de la Loire
RDF |Ink extractor aux associations sous la forme de subvention
Mises a jour e
Associations bénéficiaires d'un concours en nature
octroyé par la Région des Pays de la Loire
Mis a jour le : 07/07/2015
i . Subventions aux associations versées par le
Fréquence : hebdomadaire Département de Loire-Atlantique
kA : Ecoles de musique associatives en Loire-Atlantique
Collectivités et organismes “ “
Gestionnaire : Ville de Nantes
Propriétaire : Ville de Nantes
Diffuseur : Nantes Métropole

Figure 9: Link to RDF description of a dataset’s metadata.

The rules defined during the registration process are used in the fetch stage of the harvesting. We
select one of the pre-defined methods for collecting the meta-attributes by checking whether or not
the ‘RDF Path’ label has a valid value. The check is performed with the I "“rdf" in
rules.keys() code, shown in Table 6, where ‘rdf’ is the internal name that is used in the code to

describe the specific field in the form.

3.2.2 Ability to process JavaScript code

The gather stage of the HTML harvester is used to collect all available URLs of the datasets. In this

stage, we need to go through all the different pages in which these URLs are listed. In the case that a

® https://github.com/opendatamonitor/ckanext-
htmlharvest/blob/master/ckanext/htmlharvest/harvesters/RdfToJson.py

© 2015 OpenDataMonitor | FP7-ICT 611988 22



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 2

catalogue uses a navigation system based on JavaScript snippets in order to reach and retrieve each
hosted dataset, we use a different mechanism. During catalogue registration, we label the catalogue
as such a case and provide inputs in specific fields, as explained in Section 2.3, which are used to

handle this type of situations.

To address this issue, we used the Selenium’ Python library, which allows to execute code
enclosed in a JavaScript snippet. In our case, this made it possible to perform automatic paging in the
catalogue. However, specific technical issues had to be overcome in order to support this
functionality. In particular, this involved the selection of the browser to use that would actually
execute the snippet, while being able to run on a server where no GUI environment exists. Our first
try was with the PhantomJS™. This browser is capable of performing all typical tasks related to a
browser, including the execution of JavaScipt code, without the need to load a GUIl. However, after
few experiments, we concluded that this software was not mature enough to cover our needs and to
perform JavaScript execution successfully. Subsequently, we resorted to the use of the Mozilla’s
Firefox'* web browser, and specifically the Python library pyvirtualdisplay*?, which made it possible
to run headless Python Selenium/WebDriver tests in our ODM server. Now that we set up and
configured the tools to handle issues related to our problem, we can continue with describing the

process performed by the harvester.

First, the harvester takes the value from the “btn_identiFfier” field provided in the registration
form. This value, in combination with the value from Action Type field, is used to search in the HTML
code and retrieve the JavaScript code. Then, it is provided as input to the Selenium library and thus
executing the code to access the pages with the dataset URL links. This way, the harvester goes
through all the pages of the catalogues until there everything is collected. Two types of values can be

filled in “btn_identiFfier’ that change slightly the process:

e number fields, i.e. 1,2,3..., that navigates directly to certain page;

e text button, (in the above example, ‘Siguiente’), that navigates to the next page that follows
the current one.

In the first case, we need to modify the JavaScript code to access all the pages. For instance, in

http://opendata.cloudbcn.cat/MULTI/es/catalog/ catalogue, the code for the first page with datasets

is the following:

Javascript:___doPostBack("ctl00$ContentPlaceHolderl$DataPagerl$ctl0l$
ctl00",""). To access next pages, we need to increment it by one, i.e.
Javascript:___doPostBack("ctl00$ContentPlaceHolderl$DataPagerl1$ctlols$

? https://pypi.python.org/pypi/selenium
1% http://phantomjs.org/
1 https://www.mozilla.org/en-US/firefox/products/

2 https://pypi.python.org/pypi/PyVirtualDisplay

© 2015 OpenDataMonitor | FP7-ICT 611988 23



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 2

ctl01",""), in order to go to the second page. We do this each time we want to navigate to
another page with URLs of datasets. On the other case, things are simpler. Since that button by
default navigates to the next page, we only need to retrieve the embedded JavaScript code. Thus,
each time we want to navigate to the next page, we only need to execute again and again the same
code with the Selenium library. In our example, the reported code from the text button field is:
Javascript:___doPostBack("ctl00$ContentPlaceHolderl$DataPagerli$ctl02$
ctl00", " "), which is parsed as it is every time from the Selenium. Finally, the harvester returns
when all metadata collected. This happens when the executed code returns an empty page, first

case, or the identifier button is missing, in the second case.

3.2.3 Assessment of enhancements

Based on the improvements and enhancements described above, we managed to increase the
number of catalogues being harvested, reaching a number of 150 distinct catalogues from 24
European countries. Figure 10 shows the distribution of catalogues that are handled by each type of

harvester.

Types of Harvesters
used for 150 catalogues

5.3%

M ckan
H html

kd socrata

Figure 10: Distribution of catalogues handled by each harvester type.

Moreover, in Figure 11, we see the portion of catalogues where the paging is implemented with
JavaScript code. As shown, the enhancement of the HTML harvester to process JavaScript code for
paging, allowed to process a significant number of additional catalogues that could not be

successfully harvested with the previous implementation.

© 2015 OpenDataMonitor | FP7-ICT 611988 24



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor P
PROGRAMMING STATUS REPORT 2

Based on this improved version of the ODM harvesters, we are currently able to collect metadata
from 150 catalogues. Figure 12 shows the distribution of the number of datasets collected from the

monitored catalogues.

HTML Harvest method

M Javasctipt

M Static

Figure 11: Portion of catalogues handled by the HTML harvester using Javascript code.

Frequency Distribution of Catalogue's size
- 85

[Yo)
o

N
o O

Frequency
N W B U1 O
© © © © O
1 1 1 1 1

[Eny
o
1

22 23

1-200 201-400 401-600 601-800 801-1000 1000+
Number of Datasets

o

Figure 12: Number of datasets collected from the monitored catalogues.

© 2015 OpenDataMonitor | FP7-ICT 611988 25



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 2

Figure 13 shows the presence of each metadata attribute in the collected datasets. This provides
useful and important insights about the completeness of the metadata provided from the datasets
related to a minimum defined number of metadata attributes. As observed, we can identify 5
attributes, namely title, resources, notes, license_id and tags, which are most often present in the
collected metadata. On the contrary, other attributes, such as author, category and organization, are
more rarely present. Finally, the rest of them, are very rarely provided in the metadata. Therefore,
these cannot be effectively used in any calculation or metric implementation providing useful and

reliable results.

Frequency of default attributes in metadata

100

80

60

40

Number of datasets

20

Figure 13: Availability of each metadata attribute in the collected datasets.

Finally, in Figure 14, we see an overall view of the database content. On the left side, we can view an
instance of existing collections in the DB and on the right side we get several overall statistics. For
instance, the overall storage size of the DB in disk is around 4GB, 92% of which is occupied by the
collections odm and odm_harmonised, which are the ones containing the raw and the harmonised

(see next section) metadata, respectively.

© 2015 OpenDataMonitor | FP7-ICT 611988 26



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor
PROGRAMMING STATUS REPORT 2

[ ckan_container_server (5) R

b 59 System | § dbstas) x |

b = odm N

« = odm_clean & ckan_container_server |E experimental.debian.server:17017
S e
» 9 System
> catalogregistry (L 0.025 sec.
> catalogues
> categories_dict_basic Key Value Type
3 categories_dict_catalogue ¥ (1) {14 fields } Object
» categories_values_dict_basic m) db odm_clean :
3 categories_values dict_catal... | collections 31 132
» cities #| objects 716811 132
» countries #| awgObjSize 4818.594268 C
» dates dict basic #| dataSize 3454021376.000000 C
b | dates_dict_catalogue = storageSize 4166344704.000000
b | dedups %] numExtents 119 132
L4 dictionary %] indexes 29 t32
» formats_dict basic #| indexSize 21151312 137
b | formats_dict_catalogue ] fileSize 6373244928.000000 [
> harmonise_jobs #| nsSizeMB 16 132
» html_jobs w 13 dataFileVersion { 2 fields } [ t
L4 jobs & major 4 32
4 licenses_dict_basic L& | minor 5 t32
3 licenses_dict_catalogue ¥ &3 extentFreelist {2 fields } Object
> new_categories_mappings & num 0 t32
3 new_categories_values_map... =] totalSize 0 t32
> new_formats_mappings L] ok 1.000000 C
> new_licenses_mappings
» odm
» odm_harmonised
» possible_labels
» unharmonised_category_val...
» unharmonised_formats
» unharmonised_licenses

Figure 14: View of the database for metadata collection and processing.

© 2015 OpenDataMonitor | FP7-ICT 611988



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 2

4 HARMONISATION ENGINE

An important part of the system is the Harmonization Engine, which is the module responsible for
integrating and reconciling the raw metadata collected from the monitored catalogues into an
internal representation. This allows for further processing and analysis, in particular for the
calculation of the various metrics employed for monitoring. Some first steps of this process were
undertaken during the first period of the project (see Deliverable D3.3). During the second period,
the harmonization process has been extended to a fully functional component with multiple levels of
mappings and different processing handlers. Additional components were also implemented to

remove existing duplicate metadata. Below we describe these enhancements and changes in detail.

4.1 De-duplication module

The various catalogues that have been included in the system for harvesting and monitoring come
from different geographical levels around Europe. Thus, the list includes catalogues ranging from
regional level to national and pan-European. Although this improves coverage, a problem that arises
is that duplicate datasets often exist among the monitored catalogues, since a catalogue at a higher
regional level (e.g., national) may often aggregate datasets from lower levels (e.g. city-level). As a
result, there is a need to identify and exclude duplicates when computing the various metrics in

order to avoid bias in the results.

Before describing how we handled the problem, we note that we consider that datasets hosted
within the same catalogue to be duplicate free. There were two reasons for making this assumption:
(a) an investigation on a sample of the collected metadata did not provide evidence for the opposite,
and (b) limiting the duplicate detection task to only consider different catalogues reduces the time
and resources required. Nevertheless, it is straightforward to modify this process to also check for

duplicates within the same catalogue.

Before we proceed, we need to define the terms duplicates and candidates. As duplicate we describe
a pair of metadata stored in the database and refer to the same dataset which exists and harvested
from two different catalogues. Respectively, a candidate is a pair of metadata that is highly probable
to describe the same dataset which again is hosted in different catalogues. Having clarified these

terms, we continue on presenting how the module operates.
The de-duplication module consists of two distinct phases:

e indexing: this step indexes all initial metadata, as described in more detail later, in order to
reduce the number of comparisons that are needed to identify duplicates
e searching: this step performs the actual comparisons to identify (potential) duplicates

© 2015 OpenDataMonitor | FP7-ICT 611988 28



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor f
PROGRAMMING STATUS REPORT 2

During the

indexing phase, we perform operations that subsequently make it faster and more

accurate to identify potential duplicates in the database. Specifically, this includes the following

steps, performed for all metadata records:

1.

prepare the content for each metadata record that will be used as indicator for
identifying duplicates; specifically, we use for this purpose the concatenation of the fields
<title> and <notes>;

tokenize the content string and remove punctuations, stop words etc. The Whoosh API
used for this*3;

calculate the md5sum on the content string on every metadata; this attribute will be
used for exact matching (see below);

create 4-gram Shingles from content string and calculate minhash™; this attribute will be
used for approximation matching (see below);

store the above calculated attributes (this is done in the MongoDB database, under the
collection dedups), and create an indexer on the minhash field.

The process is illustrated in the diagram below.

‘,// Start )

\_ Indexing j

/7 .
Splits end <no metadata in <
words into the list?
subwords
yes
\ 4
4 | content
Remove (title+notes)
punctuatio .
ns tokenize
content
> mdSsum
content ~| Split token
v content into .
4-grams ™ minhash
lowercase 4-grams | Store in mongo
DB and index
minhash field
v
Stopwords
filter

Figure 15: Flow chart for the indexing phase of the de-duplication process.

B https://pythonhosted.org/Whoosh/api/analysis.html
" https://github.com/go2starr/Ishhdc

© 2015 OpenDataMonitor | FP7-ICT 611988

29



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 2

The result of the above process is a fully indexed set of metadata records in our repository that are

about to be used by the searching phase.

During the searching phase, we identify and log candidates of metadata. The procedure comprises

the following steps:

1. select a newly harvested metadata record in the repository;
2. find records with identical minhash;

3. apply similarity criteria (see below)

4, candidates produced for verification

5. repeat steps 1-4 for every metadata record.

Criteria for similarity

In order to identify candidates among metadata, we check a number of attributes to comply with
specific rules. The number and the type of fields that were chosen should fulfil a few requirements.
Firstly, the number should be as small as possible to minimize the processing time but also sufficient
to produce reliable results. Also they should exist in most of the metadata, ideally in every metadata,
and have valid values in order to be useful. Empirically and consulting Figure 13, we ended up with
the following attributes: title, notes, resources and date_updated. Except for the date_updated, the
rest are in accordance to our requirements. However, we choose also the date because it was
necessary, whenever it existed, in automating steps of our process, which will be clear below. For

each of the aforementioned attributes, we apply the following checks:

o Content (<title>+<notes>): given the contents of a pair of metadata, C and C, we calculate
the edit distance (Levenshtein distance), dist(C,C’). The requirement is that the edit
distance must be lower or equal to a threshold. An optimization is applied for the special
case of dist(C,C'):O. We use the md5sum, already calculated in the indexing phase, to find
equal string. This saves time in string similarity calculations performed with the edit
distance algorithm.

o Resource: given a pair of metadata, they have a set of resources attached to them, R and
R. A resource R; ERis equal to R, €R'if and only if they have the same URL and size.
The following cases are valid:

0 RN R # @ the two sets have equal resources and the type of relations between
them could be: a) R = R, when the two sets are equal,b)(Rc RV R > R’), whenR
is strict subset to R or R is strict superset to R’ respectively and c) (R ZR VR 2 R),
when none of them is superset to the other;

0 RNR=0dA(R#dVR # @): the two sets have no common resources and at least
one of them is not empty;

0 R=@AR = @ both sets are empty.

© 2015 OpenDataMonitor | FP7-ICT 611988 30



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t

PROGRAMMING STATUS REPORT 2

o Update date: given the date_updated for a pair of metadata, DU and DU’, we compare
these values. One requirement for the comparison is that both DRs field values must
exist (DU A3 DU). In this case, we can have the following:
o DU=DU: date_updated values are equal;
0 DU #DU'’: one of the two dates is newer than the other;

To formulate requirements and cover all alternative conditions for the above rules, we use the

decision table presented in Table 1. Based on this, the process results to label each of the metadata

records stored in the database as:

e Unique: the metadata object is successfully identified as unique (i.e. no candidate duplicates
were found) and no further processing is needed;

e Candidate: a pair of metadata is marked as candidate and waits for verification.

Table 1: Decision table to label metadata as Candidate or Unique

g (]
= Resource Edit distance Update date he) 3
i 2 g
S & | >
8 (@)
R1 RﬂR,:@/I(R#@[/R';:Q) N i "
pU=DU V
R2 , .
dist(C,C)=0 (ADU VVADU)
R=R ,
R3 DU # DU x
R4 dist(C,C)#0 - "
7 (7]
pu=pU lVV |§
R5 |8 .
dist(C,C)=0 (ADU VADU) | &
2 R6 Rok=0 ReRV DU # DU x
3 R>OR' ’
= R7 dist(C,C)=[1,2] ) "
R8 dist(C,C)>2 i x
RI dist(C,C)=0 - "
R10 ReR V dist(C,C)=[1,2]
, ist(C,C)=[1, -
R 2R
R11 dist(C,C)>2 - x
R12 , dist(C,C)=[0,1,2] §
R = @/] R = @ /
R13 dist(C,C)>2 - <
31

© 2015 OpenDataMonitor | FP7-ICT 611988



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 2

Finally, having the list of the candidate pairs, we need to figure out the pairs which are indeed

duplicates and reject those that are not. Moreover, for each of the identified pairs as duplicates, we

must label one of the members of the pair as original. This flag is used when we need to query the

database and take into account only one of the metadata pairs that were found and labelled as

duplicates. This distinction is made with one of the following ways:

Automatically: this is the case where the applied rules results in classifying a candidate
pair as duplicates and assigning to one the them the original flag. If we look at the
decision table, we find that this is the outcome of applying rules R3 and R6;

Semi-automatically: in this case, the duplicate pairs are produced automatically.
However, this is not also the case for the original flag. The rules R2, R5 and R9 result in
this occasion. Thus, we need to apply another step that is called partial ordering. We
construct a hierarchy of importance between catalogues. This means that metadata
belonging in a catalogue of greater importance can be considered as original to those
that come from catalogues lower in the hierarchy. Many things can result in
characterizing a catalogue as more important to another one. For instance, it could be
how trustworthy or up to date is, if it is considered as official for a country or even the
geographical area that is covered from the hosted datasets;

Manually: this is the trivial case, where each of the candidate pairs needs to be
manually verified as duplicate. This is the result when the rest of the rules in Table 1 are
applied.

The partial ordering is saved in a file called partialOrder.csv. An example of such a file is presented in

Table 4, where the vertical line ‘|’, separates the catalogue on the left that are superseded by those

on the right. The right part of declaration can contain more than one catalogues which are separated

by comma, ‘,’.

The whole process is illustrated in the diagram below.

© 2015 OpenDataMonitor | FP7-ICT 611988 32



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor r
PROGRAMMING STATUS REPORT 2

Start Searching

ore metadata i

. no:
the list?

yes

) 4

end >

Retrieve next
metadata
object

YES Date exists? yes—» Compare dates T

. es
L minhash v no newer
no candidates? no ' exists?
yes
Y
Compare
md5sum exac Resources > P (
: es—»{ resources (num
matches? exist? ¥ i
and sizes)

A superset

exists?
.| Apply partial |
” ordering
exists?
yes
I no

Update logs < nor Ao yes
s 2 catalogue_url

different?

Update DB with |
duplicate flags |

yes

Figure 16: Flow chart for the searching phase of the de-duplication process.

Finally, we modify each metadata object in our harmonised instance of the collected metadata to

mark our findings, as in Figure 17. The following meta-attribute fields are used for this:

© 2015 OpenDataMonitor | FP7-ICT 611988 33



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 2

. is_duplicate: this flag is set to true when the metadata is labels as duplicate. Otherwise it
is set to false.

o duplicates: it is an array of ids of the metadata that are found to be duplicates to current
one;

. is_original: this is used as a flag whether this metadata is used as original or not. It takes

the values true or false.

[=] ckan_container_server (5) r .
b [ System |  * db.getCollection(odm_ha... % |
» odm N )
- odm clean = ckan_container_server = experimental.debian.server:17017 |- odm_clean
~ [ _Collections (30) 1 db.getCollection(’ i
» [ System -
b [ catalogregistry odm_harmonised (1) 0.325 sec.
3 catalogues
» || categories_dict_basic Key Value Type
» categories_dict_catalogue w 13 (1) Objectld("559cf1fa8daf098d7a510595") { 40 fields } Dbject
3 categories_values_dict_basic | _id Objectld("559¢f1fa9daf098d7a510595")
» | categories values_dict _catal... 1 maintainer
3 cities natl| - maintainer_email null
> countries L% num_tags 0 132
» dates_dict_basic e id 7449aff9-4c07-469d-acf3-8h7ah2198734 St
» dates_dict_catalogue & metadata_created 2015-07-08 12:48:41.7332 C
» dedups » (3 relationships Array [0] A
» dictionary v license Datenlizenz Deutschland Namensnennung 1.0 St
3 formats dict basic & metadata_modified 2015-07-08 12:48:41.733Z
» fonﬂajs_di[;'t—ca[a]ggue v author Fachgruppe Verkehrstelematik, Verkehrsmanagement
» harmonise J&;s v author_email telematik@Ibm.rip.de
» html_jobs | download_url hitp:fiverkehr.rip.de/syncdata/datex2_baustellen_rip.xml
» jobs | platform ckan
» licenses_dict_basic ] statg active
» licenses_dict_catalogue =t version
» new_categories_mappings w2l license_id DL-DE-BY
» [ new_categories_values_map... €| copied true
> new_formats_mappings “t type datensatz -
3 new licenses_mappings b [T resources Array [1] A
» odm b 3 harmonised { 16 fields } Dbject
(e num_resources 1 132
» | possible_labels b (3 tags Array [0] A
» [ unharmonised_category val... v catalogue_url hitps:/iwww.govdata.defckan/ St
» unharmonised_formats 23 tracking_summary { 2 fields } ]
» [ unharmonised_licenses b (&3 groups Aray [1] A
» 9 Functions " name arbeitsstellen-auf-bab-in-rp St
» [ Users ¥ isopen true .
» @ test | notes_rendered <p=alle Arbeitsstellen des Landesbetrieb Mobilitat Rheinlan... St
e 5
" notes alle Arbeitsstellen des Landesbetrieb Mobilitat Rheinland-Pf... =i
v license_title Datenlizenz Deutschland Namensnennung 1.0
mut| ratings_average null
} L3 extras { 9 fields }
| license_url https:fiwww.govdata de/dl-de/by-1-0 5
_#| ratings_count o 132
el title Arbeitsstellen auf Bundesautobahnen in Rheinland-Pfalz St
v revision_id 02653eli-ef5e-4907-b2f3-cdb3aBe524b2 St
duplicates Array [2] Array
Objectld("559b7if29daf09ba5e2fadfs") Objectld
Objectld{"559f1a519daf093102aa09b2") Objectid
true Boolean
Irue Boolean

Figure 17: Example of duplicate metadata objects.

4.2 Harmonization process

The harmonization process is a Python service responsible for checking created harmonization jobs
that need to be executed. These jobs are created automatically when the harvesting process for a
catalogue finishes. The collection harmonise_jobs in the database contains all created jobs. Every

such created job stores information that is required to run correctly the process. The fields assigned

© 2015 OpenDataMonitor | FP7-ICT 611988 34



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 2

to every job are grouped in two categories. In the first category, we have fields that describe which

attributes of the collected metadata need to be harmonized.

The following metadata attributes, whenever they exist, are harmonized: dates, formats, mime-
types, licenses, categories, languages and countries. On some of these, we harmonize both labels and
values. That is, there are cases where the name used to describe the above attributes does not
comply with our internal schema. For instance, the attribute date_released could be encountered as
publish-date, deposit_date, etc. These fields are the date, categories, languages and countries. A

dictionary of mappings is used to perform the above transformations®.

The second one contains the fields that provide information on which metadata to apply the
harmonization rules and being able to get an overview of the current status of the process and its
execution. Especially, the id field is used to collect statistics related to the process of harmonization
from another collection, jobs, like when last process is executed, the fields that where successfully
harmonized etc. The cat_url, references the catalogue whose metadata are about to be harmonized.
And finally, the harmonised and status fields are used by the platform to be aware of the progress of
the harmonization process, i.e. whether it has ever been executed for the specific catalogue,

whether it is currently running, pending etc. The possible values for the harmonised field are:

o pending, meaning that the process of harmonization has never been executed;

o started, meaning that it is currently being executed for the first time;

o finished, which means that it has been executed at least once in the past for the specific
catalogue.

Similarly, the possible values for the status field are:

. unharmonised, meaning that the metadata are still in their raw form;

J pending, meaning that a harmonization job is in the queue waiting for execution;

o harmonisation_started, meaning that the harmonization process is running at the
moment;

. harmonised, when the harmonization is finished and returned.

In Figure 18, we see an example of such a harmonization job for the Polish open data catalogue
(http://pl.ckan.net). We can identify that it has already been harmonised once in the past
(harmonised:’finished”), and that there is a waiting job to be executed
(status:’pending?), first in the queue when the service will be released from its work. The rest
of them are referring to the attributes which are actually going to be harmonised, e.g. dates,

categories, licenses etc.

B https://github.com/opendatamonitor/ckanext-harmonisation/tree/master/ckanext/harmonisation/
controllers/dictionaries

© 2015 OpenDataMonitor | FP7-ICT 611988 35



D3.6

PROGRAMMING STATUS REPORT 2

TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor

' o

'[E] ckan_container_server (5) -
» 7 System # * db.getCollection('harmoni... %
~ & odm
~ [ Collections (69) ckan_container_server |H experimental.debian.server:17017 odm
» 5 System 1 db.getCollection('harmenise_jobs').find({}
» author_email
b = catalogregistry harmonise_jobs (L) 0.014 sec.
» catalogregistry bu 24 & 15
» categories_dict Key Value Type
» categories_dict_basic w 3 (1) Objectld("55a5e9919daf095b0f51291d") {12 fields }
» calegories_dict_catalogue ) _id Objectld("55a%5e9919daf095b0f51291d")
» || categories_values_dict ! harmonised finished
4 categories_values_dict_b... 1t status pending
4 categories_values_dict_ca... = dates dates_selected
» cities v countries countries_selected
» countries v catalogue_selection pl_ckan_net
» countries2 v languages languages_selected
» dates_dict el cat_url hitp:/fpl.ckan.net/
» dates_dict_basic *| categories categories_selected
b | dates_dict_catalogue v/ icenses licenses_selected
» [ dedups = id 038dac9d-6i65-4902-9790-80e2¢c4595209
> dictionary | resources resources_selected
» fetch_temp b 3 (2) Objectld("55a5e9939daf095b0i51291e™) {13 fields }
» fqrma_m dict b 13 (3) Objectld("55a5e9949daf095p0151291F) {13 fields }
» formats_dict basic b 3 (4) Objectld("55a5e9969daf095p01512920") {13 fields }
» formals_dict_calalugue b 3 (5) Objectld("55a5e9939daf095b0f512921") {13 fields }
= ha_[mcmeJ's b L3 (6) Objectld("55a5e99a9daf095b0f512922") {13 fields }
|4 3L ObioctldMEE o EalfcOd afOEROEE 1 2002, L2 finlde 1

Figure 18: Example of harmonization job.

During the harmonisation phase, the newly collected metadata are first transferred into an
intermediate database (”odm_harmonised_temp”), in order to initiate the harmonization
process. Every metadata object in the odm collection could be in one of three states: new, copied or
updated. We transfer all metadata that are new or updated. Before we start to process the temp
collection, we add a flag copied: true and delete the updated flag for all metadata transferred in
the temp collection. Then, we start to apply the harmonization rules to the fields defined in the
harmonization job. Each one that is executed is copied to the odm_harmonised collection.
However, before storing it, we check if the metadata object actually exists from a previously applied
harmonization. This is crucial because if it is updated, certain created fields need to be maintained,

e.g. duplication flags. After that, we can safely delete the temp collection.

4.3 Levels of applied mappings

The Harmonization Engine applies a set of specified rules (i.e. mappings) in order to reconcile
metadata records collected from different catalogues. At the beginning, during the first period of the
project, we started by specifying these rules individually for each newly added catalogue. However,
clearly a large part of these mappings are applicable for many catalogues, with fewer ones being
exceptions that have to be specified separately. Thus, to make this process more easy and efficient to

scale and maintain, we have defined a three-level hierarchy of mappings, as described:

1. top-level: these are global rules, applied by default to all catalogues; only the
administrator can define and change them;

© 2015 OpenDataMonitor | FP7-ICT 611988 36



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 2

2. middle-level: rules in this level apply to a group of catalogues, i.e. catalogues belonging to
the same user;

3. bottom-level: these are rules that have local scope, i.e. are associated and applied to a
specific catalogue.

Having this hierarchy provides much more flexibility for defining, maintaining and applying mapping
rules during the harmonization process. Specifically, the rules that are finally applied to each
catalogues’ fields are constructed from all three levels according to the respective scope. That is, we
start with the top-level rules that are applied to a field we are trying to harmonize and then we check
successively to find whether any more specific mappings exist from the middle or the bottom level,
that are applicable to this specific catalogue. If so, the mapping with the most specific scope
overrides the previous ones. Moreover, new mappings that do not exist in the top-level category are
included to the mapping list. This enables us to be flexible, being able to specify generally applicable
mappings at the top-level while also defining exceptions that are to be applied to specific catalogues

or groups of catalogues.

For instance, let’s say that our mapping list contains the following: Creative Commons By 3: CC BY-
3.0. This is a generally applied mapping to most of the catalogues. Although it is designed to ensure
worldwide validity, jurisdictions differ on certain countries'®, e.g. Germany — CC By-3.0 De, Spain—CC
BY-3.0 ES etc. Thus, we wanted to easily be able to retain and apply that information in our internal
database without affecting the general rules or needing to specify multiple versions of the same
license for each of the harvested catalogues. Therefore, we can group together the German

catalogues and we can introduce the following mapping: e.g. defining its scope to be this group.

'® https://meta.wikimedia.org/wiki/Open_Content_-
_A_Practical_Guide_to_Using_Creative_Commons_Licences/The_Creative_Commons_licencing_scheme

© 2015 OpenDataMonitor | FP7-ICT 611988 37



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 2

5 ANALYSIS ENGINE

The harmonized metadata are accessed through the Analysis Engine. This component calculates a
series of key metrics defined by ODI in the context of Task 2.3, which were enhanced and enriched
during the second year of the project and makes the results available to the demonstration site via a
RESTful API (initially introduced in Deliverable D3.3). This API is publicly available’.

These metrics are used to analyze and compare catalogues’ metadata and can be grouped in two
general categories: Quantity and Quality. The first one is about reporting statistics by counting or
summing selected attributes of the harvested metadata. For instance, we count all datasets and
distributions or add up the distribution size contained for every catalogue in the database. All
implemented API functions for this category are presented in Table 13. On the other hand, the
defined quality metrics attempt to quantify how good and useful the collected metadata could be to
end users. They combine data from different attributes and report how complete the specific
metadata are and how possible it is that they could provide adequate and meaningful data for
someone that is interested to use them. For instance, we try to identify the percentage of the
datasets of a catalogue that has at least one resource which is in machine-readable format, i.e. CSV,
TSV, JSON, XML or RDF, or each catalogue’s accessability which means that the following attributes
exist for every metadata object and have valid values: a description, at least one valid link and an

author email. Table 14 contains all the functions for quality metrics.

The above metrics are independent meaning that quality does not imply quantity and the same
stands the other way around. That means catalogues with a big number of resources does not imply
these resources will be provided in any of the so called machine-readable formats. So the metrics are
tools that could be used by the end users to find meaningful datasets on what he wants to

accomplish. The metrics implemented are basically calculated in two ways:

e (Catalogue level, meaning that counts or aggregations are applied on each catalogue;
e European level, which refer to metrics calculated on top of all datasets harvested among the
24 European countries.

The dashboards used in the demonstration site contain another level, the country one. Metrics for
this level are calculated based on results provided for each catalogue and grouping all that belong to

a specific country.

These metrics were implemented or updated according to newly defined requirements during the

second period of the project.

v http://odmapi.magellan.imis.athena-innovation.gr/api/v1.0/_commands

© 2015 OpenDataMonitor | FP7-ICT 611988 38



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor r
PROGRAMMING STATUS REPORT 2 :

6 ADMINISTRATION PANEL

An administration panel was designed and implemented to provide an easier and more intuitive way
to control and monitor the main parts of the harvesting and harmonization process. We describe the

main parts of this panel below.

6.1 Harvesting panel

In this part, we basically integrated both the HTML and the Socrata based harvesters to the existing
panel of the ckanext-harvester. This panel provides an overview of the harvested metadata for each

one of the registered and monitored catalogues.

Specifically, there are two tabs, Datasets and About, as illustrated in Figure 19. The first one provides
a summary of all the collected metadata, allowing to navigate to information about individual
datasets by clicking on the title of the respective dataset. The second one contains general
information about the catalogue, such as its URL, the language, country etc., which is filled in during

registration.

4 / Harvest Sources / dublinked com

dublinked_com
o i Datasets @ About s

Dublinked is an initiative by

the Dublin Region Local

Authorities (DLAS) and NUI Fingal Development Plan 2011-2017 Record of Protected Structures - Dublinked™...
Maynooth to facilitate cHApE Jesyu § ML m

data-driven innovation in

urban environment. It will do

this by:... read more Fingal Development Plan 2011 - 2017 Nature Development Areas - Dublinked™ . S...

Datasets

275

Fingal Development Plan 2011 - 2017 Development Plan Heritage Sites - Dublink...

2010 - 2016 Development Plan Amenities - Dublinked™ . Sharing Data, Informati...

Figure 19: View of the harvesting panel.

Moreover, it provides access to registered users to view information related to the harvesting
process through the Admin icon (see Figure 19). This opens up another view that consists of three
tabs, Dashboard, Jobs and Edit, as shown in Figure 20. The Dashboard tab provides information
about the most recent running process, i.e. whether it has finished or is still running, and last date of
execution. The Jobs tab (see Figure 21) displays a history of all running processes. A detailed history
for every such process is provided too, where information about any errors that may have occurred

is also included, to facilitate debugging and maintenance.

© 2015 OpenDataMonitor | FP7-ICT 611988 39



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 2

A / Harvest Sources / dublinked com / Admin

dublinked_com %> Reharvest Clear = ® View harvest source

Dublinked is an initiative by

the Dublin Region Local

Authorities (DLAs) and NUI

Maynooth o faciliiate LaSt HaWESt JOb
data-driven innovation in

& Dashboard = Jobs & Edit

urban environment. It will do Id e2ecfd5c-abdb-4751-aeal-73302f48e6b2
this by:... read more Created July 7, 2015, 05:00
Started July 7, 2015, 05:59
Datasets .
275 Finished
Status Running

= View full job report

Figure 20: View of the admin panel.

A / Harvest Sources / dublinked com / Admin

dublinked_com

Dublinked is an initiative by

the Dublin Region Local

Authorities (DLAs) and NUI HaWESt Jobs
Maynooth to facilitate
data-driven innovation in
i bar e ohmeat. Ll b Job: e2ecfd5c-abdb-4751-aeal-73302f48e6b2

this by:... read more Started: July 7, 2015, 05:59 — Finished: Not yet

& Dashboard = Jobs @ Edit £ Reharvest Clear @ View harvest source

Datasets

275 Job: 8dcb4273-b3ad-4adc-a957-6152d18d2a20
Started: June 23, 2015, 14:54 — Finished: June 29, 2015, 16:54

EEIET) cadded 265updated 27 deleted

Job: 62f6d219-9f12-4791-a425-04cdb9003746
Started: June 23, 2015, 10:32 — Finished: Not yet

Oadded Oupdated 0 deleted

Job: f8cefe00-5734-43¢c4-b4c6-12fd0d11cO9b7

Started: June 17, 2015, 09:57 — Finished: June 2, 2015, 10:15
ESETD) 269added Oupdated 35 deleted

Figure 21: View of the Jobs tab.

6.2 General overview panel

Although the previous panels give a detailed and thorough view of the executed harvesting jobs and

their history, they apply to specific catalogues. This, however, is not very useful when we need to

© 2015 OpenDataMonitor | FP7-ICT 611988 40



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 2 -

monitor the harvesting process as a whole, e.g. to obtain an overview about which of the scheduled
harvesting processes succeeded or not and possible errors that may have occurred in the harvesting

process, based on indications arising from the presented results.

For this purpose, we have designed and implemented an additional dashboard, which is shown in
Figure 22. This includes information for both the gather stage of the harvesting process, under the
Gather/Last Gathered column, and the fetch stage, under New and Updated columns, and finally the
current status of the running job. All this information is provided for each catalogue in the platform.
In both cases, the presented results are referring to the current executed process and the last one.
Empirically, this is adequate to lead us to useful conclusions for possible errors in the process. For
instance, if after the completion of a harvesting process, the number of datasets collecting from the
catalogue is lower than that found from the same catalogue during the last harvesting attempt, it is
an indication that an error may have occurred, preventing the correct and complete harvesting of

that specific catalogue.

This dashboard also contains useful filters for grouping the results. The existing filters that can be
applied are: Gather Stage, Fetch Stage and Harmonisation, which select the type of process for which
the information is to be displayed. After selecting a value for each of the above filters, we need to

click the Monitor button in order to apply the filtering on the presented results.

This panel is available only to the Administrator in order to regularly check for the status of the
running processes and any indications for possible errors. When such an error is deduced, the more
detailed panels described above can be used to find more information on that catalogue and thus to

help find the reason for the error that might have happened.

A / Monitor
© Monitor Dashboard
Monitoring Dashboard
Gather Stage: | All j
Fetch Stage: = All j
Harmonisation: | Al j Monitor
Catalogue Platform Gathered /Last New Updated Status
Gathered
data_amsterdamop ckan 208/0 0/ 208/ finished
endata_nl
data_gouv_fr ckan 13780/0 I [ not yet
data_gov_sk ckan 552/0 71 545 | finished
ckan-gobex-es ckan 21/0 / / finished
dati-comune- html 240/ 0 / / finished
bologna-it

Figure 22: View of the general overview panel.

© 2015 OpenDataMonitor | FP7-ICT 611988 41



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor r
PROGRAMMING STATUS REPORT 2

6.3 Harmonization panel

We implemented a separate panel to monitor the harmonization processes. This panel enables us to
manage rule definitions, to manually execute customized harmonization processes and generally to

collect statistics about previous or current running processes. It consists of the following tabs:

e Dashboard, which gives a detailed overall view of the last executed harmonization process
and the ability to manually schedule a harmonization job;

e View/Add Rules, that enables us to view/update existing mappings or propose new ones;

e  Edit Rules, which is used to accept or reject mappings proposed in previous step.

# / Harmonisation Dashboard

© Harmonisation
Dashboard

& Dashboard @ \iew/Add Rules [# Edit Rules

Catalogue: | edinburghopendata_info j

View Info

Id:
Catalogue Url:
Harmonisation:

Harmonisation Status:

Select Harmonisation Categories

ID Harmonise
Dates —
Resources
Licenses —
Languages
Categories
Countries

(=T 4 R - FL R AN

Unharmonise Catalogue Harmonise Catalogue

Figure 23: Dashboard view of the harmonization panel.

The first panel, Dashboard, consists of two parts (see Figure 23). The top part contains a drop-down
menu with all harvested catalogues in the ODM platform. We can select one of these to get
information related to the process of harmonization, by clicking the View info button. The

information we get back includes the id of the process that was assigned upon job creation and the

© 2015 OpenDataMonitor | FP7-ICT 611988 42



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor r
PROGRAMMING STATUS REPORT 2 |

URL of the catalogue. Also we get the status of the process under the Harmonisation field which
could be finished, started and not yet executed. Below these, we have detailed information about
each of the specific harmonization cases that were executed. We start with a general overview under
Harmonised basic fields, which reports the new datasets that have not yet been harmonized and
certain actions applied to collected metadata. Moreover, detailed information about harmonized
attributes is provided, such as the timestamp of the last such process that was executed on that
attribute, the number of distinct values mapped, etc. Such an example for the Santander open data

catalogue (http://datos.santander.es/catalogo) is presented in Figure 24.

6 Harmonisation
Dashboard

& Dashboard @ View/Add Rules [# Edit Rules

Catalogue: | datos-santander-es j
View Info
Id: 57ab7d91-b486-4609-9d0a-233ec5f36b6d
Catalogue Url: http:lidatos.santander.esicatalogo/
Harmonisation: finished

Harmonised basic fields: finished - 2015-07-07 12:01:56.026000
* There are: 0 new unharmonised datasets found.
» Tags harmonised in: 0 datasets
* Extras harmonised in: 0 datasets
» Harmonised string values to int values in: 32 fields

Harmonised dates: finished - 2015-07-07 12:01:57.921000
» Harmonised date labels in: O datasets.
» Harmonised date_released in: 0 datasets
» Harmonised date updated in: O datasets
* Harmonised metadata_created in: 0 datasets
* Harmonised metadata_modified in: 0 datasets

Harmonised resources: finished - 2015-07-07 12:02:37.333000
» Harmonised formats in: O datasets
» Harmonised bad formats in: 0 resources
» Harmonised size in: 1 resources.
» Harmonised mimetypes in: O resources.
» Harmonised num tags and num resources in: 0 datasets

Figure 24: Example view of the harmonization panel.

The second part of the presented form is used to manually execute specific harmonization rules.
Under the heading Select Harmonisation Categories (see Figure 23) there are the available fields that
we can choose to harmonize. We can use the checkboxes next to each attribute to choose the ones
we wish to harmonize. After that, when we click the Harmonise Catalogue button, a customized
harmonization job is created according to the user’s input. This job will remain in pending status until
it is chosen by the service for execution. This process is applied only to metadata that have not been

harmonized in previous stages because, for instance, available mappings did not apply to this

© 2015 OpenDataMonitor | FP7-ICT 611988 43



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *

PROGRAMMING STATUS REPORT 2

catalogues’ values. In cases that we need to re-harmonize the metadata for the whole catalogue, e.g.

if an existing mapping has been updated, we can do that using the Unharmonise Catalogue button.

This resets all metadata to their initial, raw form, i.e. as they have been harvested from the

catalogue.

# / Harmonisation Dashboard

©® Harmonisation
Dashboard

@ Dashboard

Select Rules
Category :

Catalogue:
Unharmonised:
New Mapping:

Mapping:

& View/Add Rules

Licenses

data-enel-com

[# Edit Rules

j View Mappings

Key: | creativecommons attri | Value:

Key: | Creative Commons-by | Value: | cc-by

Key: | creativecommons atiri | Value:  CC BY-3.0

Add Mapping

Figure 25: Example of viewing mapping rules.

The second tab of the panel, View/Add Rules, is used to handle the mappings. This form has two

basic fields. The Select Rules Category drop-down list specifies the rule that we are interested to

check. The possible values are: Categories Values, Categories Labels, Dates, File Formats and

Licenses. These are the fields that are applied in a semi-automatic way. These rules use a list of pre-

defined mappings to decide how to proceed. The Catalogue drop-down list selects a catalogue from

the list of harvested ones. Additionally, this field has the value All Catalogues, which gives results for

all the catalogues in one shot. After selecting combined values from the above lists, we can click the

View Mappings button. We get back one or a combination of the following possible fields:

. Unharmonized, that contains the raw metadata attributes for the selected category that

none of the pre-defined mappings is applied;

o New Mapping, which both key-value pairs are empty and is used to propose new ones;

. Mapping, which contains full list, in dictionary format, of all the available mappings

applied to the selected catalogue.

Figure 25 presents an example of a catalogue which has one record for each of the previously

described cases.

© 2015 OpenDataMonitor | FP7-ICT 611988

44



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor r
PROGRAMMING STATUS REPORT 2 |

Finally, the last tab is only accessible to the administrator. In this, we can view all the proposed
mappings, new and updated, in previous step and accordingly accept or reject them. Therefore, since
it affects an important functionality of the harmonization process, we need to be sure that imported
values are verified. As seen in Figure 26, there are two fields, as in the previous tab, which make a
combined selection of the category rule to use and the selected catalogue. Then, after clicking the
View Mappings button, we get all proposed mappings for the above selected combination. For the
example shown, we see that each mapping pair is followed by a Remove checkbox. This information
is used when we click the Remove Selected / Add Rest button. It simultaneously makes two different
operations: it adds all proposed mappings and, in the same time, it deletes all those that the

checkbox is checked.

A / Harmonisation Dashboard

©® Harmonisation
Dashboard

& Dashboard & View/Add Rules [# Edit Rules

Select Rules | Licenses j
Category :
Catalogue: data-enel-com j View Mappings
Mapping: | Key: Creative Commons-by | Value: cc-by —| Remove

Remove Selected | Add Rest

Figure 26: Example of editing rules.

© 2015 OpenDataMonitor | FP7-ICT 611988 45



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 2

7 CONCLUSIONS AND NEXT STEPS

In this report, we have first presented the overall architecture and the processing workflow for the

ODM system that was designed in the first year of the project, and then we have described new

functionalities or enhancements implemented for the main components of the platform. The

progress of the work is summarised below™®:

Catalogue registry. We have added a registration form for the newly included Socrata
harvester. We modified the HTML harvester’s form to integrate the newly available method
of collecting metadata in RDF schema and handling pagination systems wrapped in
JavaScript code. Additionally, various other modifications made, mainly to this form, that
enable the multiple URLs handling used as landing pages for harvesting or user friendly error
messages during registration.

Metadata harvester. For this component, we extended and updated the harvester for
Socrata catalogues provided by the community. Also the HTML harvester enhanced with the
ability to parse catalogue’s metadata in RDF schema, increasing its accuracy, and handle
catalogues that wrap pagination in JavaScript code, collecting this way metadata otherwise
not feasible to do with current means. General statistics provided for the collected
metadata and the catalogues presenting the most frequently used meta-attributes across
catalogues, the catalogues’ sizes in number of datasets, the applied usages for each of the
implemented harvesters and their sub cases (i.e. JavaScript vs static pagination) and the
overall size of the repository in our server.

Harmonisation engine. For this component, the harmonization process has been extended
to a fully functional component with multiple levels of mappings and different processing
handlers for performing data cleaning and transformations. Additional components were
also implemented to remove existing duplicate metadata.

Analysis engine. For this component, we have extended and defined new metrics adapted to
the existing collected and harmonized attributes. These metrics grouped in two categories:
Quality and Quantity. Additionally the RESTful APl was extended to provide access to the
results of these new computations as well as the contents of the metadata repository in
general.

Administration panel. We implemented a graphical user interface to facilitate the ODM
administrator to monitor and control various aspects of the system and the processing
workflow. The harvesting panel for the HTML harvester is fully integrated to the provided
one from the ckanext-harvester. A general panel for the harvesting process was also
implemented that gives the administrator the overall overview of the whole process. And
finally, a graphical interface was implemented to support and supervise the harmonization
process for the existing catalogues in the platform.

'8 A code repository has been setup on GitHub, where the code will be made available during the course of the
project: https://github.com/opendatamonitor

© 2015 OpenDataMonitor | FP7-ICT 611988 46



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 2 -

Currently the system is up and running. It periodically harvests and harmonises collected metadata.

We monitor this process on an ongoing basis and address any bugs and issues that arise. We have

managed to harvest over 150 catalogues from 24 European countries.

© 2015 OpenDataMonitor | FP7-ICT 611988 47



D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *

PROGRAMMING STATUS REPORT 2

8 APPENDIX

8.1 Examples

Table 2: A Socrata JSON document instance.

"_id" : Objectld("5590dde09daf091cb8995c59"),
"maintainer" : "Carmen Lavado",

"num_tags" : 6,

"updated_dataset" : true,

"isopen" : true,

"resources" : [

{

"mimetype" : "text/html",

"name" : "municipals-2003-participacid.html",
"metadata_modified" : "2015-05-22T14:33:28",

"format" : "html",

"url" : "https://gavaobert.gavaciutat.cat/resource/ifan-we9g",

"metadata_created" : "2015-05-22T14:32:14",

"description" : "Participacié per mesa de les eleccions municipals de 2003"

]l

"num_resources" : 2,

"tags" : [
"eleccions",
"elecciones",
"municipals",

"municipales"”,

© 2015 OpenDataMonitor | FP7-ICT 611988

48




D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 2

|12003n,

"Processos Electorals"

],

"catalogue_url" : "https://gavaobert.gavaciutat.cat",

"extras" : {

"Dataset-Information:Data-d-incorporacié-al-cataleg" : "",
"category" : "Processos Electorals",

"Dataset-Information:Data-darrera-actualitzacié" : "",
"Dataset-Information:Any" : "",
"Dataset-Information:Update-Frequency" : "Anual",
"Dataset-Information:Department-Owner" : "Ajuntament de Gava"

b

"title" : "MUNICIPALS 2003 Participacié"

Table 3: RDF example.

<rdf:RDF>

<dcat:Dataset rdf:about="http://data.nantes.fr/donnees/detail/opendata/annuaire-des-associations-et-des-

activites-de-nantes/">
<dct:identifier>24440040400129_VDN_VDN_00132</dct:identifier>
<dct:title>Annuaire des associations et des activités de Nantes</dct:title>

<dct:description>Les données sont constituées des associations dont le siege ou l'une au moins des

activités est situé(e) sur le territoire de la ville de Nantes.

Enfin, le site

<a href="http://www.nantes.fr">http://www.nantes.fr</a> vous permet également d'accéder aux

données de cet
<a href="http://www.nantes.fr/infonantes/association">annuaire</a> via un outil de recherche.

</dct:description>

© 2015 OpenDataMonitor | FP7-ICT 611988 49




D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 2 -

<dcat:dataset>http://data.nantes.fr/donnees/detail/opendata/annuaire-des-associations-et-des-activites-
de-nantes/</dcat:dataset>

<dcat:theme>Citoyenneté / Institution</dcat:theme>

<themelnspire/>

<dcat:keywords>associatif, ESS, annuaire, association</dcat:keywords>
<dct:licence>Open Database License (ODbL)</dct:licence>
<dct:issued>1409608800</dct:issued>
<dct:modified>1436220000</dct:modified>

<lastModificationDescription>Mise a jour hebdomadaire</lastModificationDescription>

<dcat:themeTaxonomy>Thésaurus InterDoc</dcat:themeTaxonomy>
<dcat:distribution>

<dcat:Distribution>

<dcat:WebService>/api/publication/24440040400129_VDN_VDN_00132/ANNUAIRE_ASSOCIATIONS_NANTES_

STBL/content/?format=excel</dcat:WebService>

<dct:format>XLS</dct:format>

<dcat:accessURL>http://data.nantes.fr//api/publication/24440040400129 VDN_VDN_00132/ANNUAIRE_ASSO
CIATIONS_NANTES_STBL/content/?format=excel</dcat:accessURL>

</dcat:Distribution>
</dcat:distribution>
</dcat:Dataset>

</rdf:RDF>

Table 4: Example of the partialOrder.csv file

http://publicdata.eu/ | http://data.gov.uk/,http://www.nosdonnees.fr/,https://offenedaten.de/,https
://www.govdata.de/ckan/,http://www.dati.gov.it/catalog/,http://www.daten.rlp.de/,https://www.d
ata.gv.at/katalog/,http://data.gov.sk/,http://opengov.es/,http://cz.ckan.net/en/,http://data.kk.dk/,h
ttp://it.ckan.net/,http://data.gov.ro/,http://ie.ckan.net/,http://portal.openbelgium.be/,http://rs.cka
n.net/,http://suche.transparenz.hamburg.de/,http://www.opendata.provincia.roma.it/,http://opend
ata.comune.bari.it/,http://www.opendatahub.it/

© 2015 OpenDataMonitor | FP7-ICT 611988 50




D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t

PROGRAMMING STATUS REPORT 2

http://www.daten.rlp.de/| https://www.govdata.de/ckan/
https://offenedaten.de/| https://www.govdata.de/ckan/
http://www.opendata-hro.de/| https://www.govdata.de/ckan/
http://dati.venezia.it| http://www.dati.gov.it/catalog/
http://aperto.comune.torino.it| http://www.dati.gov.it/catalog/
http://dati.trentino.it/ | http://www.dati.gov.it/catalog/
http://dati.veneto.it/ | http://www.dati.gov.it/catalog/
http://daten.berlin.de | https://www.govdata.de/ckan/
http://ckan.data.linz.gv.at/| https://www.data.gv.at/katalog/
http://ckan.data.graz.gv.at/| https://www.data.gv.at/katalog/
http://datahub.io/| https://www.govdata.de/ckan/
http://datahub.io/ | http://portal.openbelgium.be/
http://opendata.awt.be/| http://portal.openbelgium.be/
http://data.opendataforum.info/| http://portal.openbelgium.be/
http://dati.toscana.it/| http://www.dati.gov.it/catalog/
http://www.opendatahub.it/| http://www.dati.gov.it/catalog/
http://opendata.comune.bari.it/ | http://www.dati.gov.it/catalog/
http://www.opendata.provincia.roma.it/ | http://www.dati.gov.it/catalog/
http://data.noe.gv.at/| https://www.data.gv.at/katalog/
http://opendata.provincia.lucca.it/SpodCkanApi/ | http://dati.toscana.it/
http://opendata.cmt.es|http://opendata.cnmc.es/
http://data.nantes.fr| http://data.loire-atlantique.fr
http://data.wu.ac.at/| http://data.opendataportal.at/
http://opendata.comune.bari.it/ | http://www.opendatahub.it/
http://dati.toscana.it/| http://www.opendatahub.it/

http://data.digitaliser.dk | https://data.digitaliser.dk

© 2015 OpenDataMonitor | FP7-ICT 611988

51




D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 2

8.2 Code Snippets

Table 5: Select harvester type for registration19

<label class="'radio">

<input type="radio" value={{ app_globals.site url ~"/harvest/new"}}
name=""button_harvester_type" id="navRadio0l1l" checked>CKAN / SOCRATA</input>

</label>
<label class=""radio">

<input type="radio" value={{ app_globals.site url ~"/htmlharvestl™}}
name=""button_harvester_type" id="navRadio02">HTML

</label>
<label class="‘radio'>

<br>

<input type="button” value="Next'" class="btn-primary btn"

onclick="ob=this.form_button_harvester_type;for(i=0;i<ob.length;i++){
if(ob[i]-checked){window.open(ob[i]-value,® top");};}'">

</input>

Table 6: Select configuration rules to apply in harvesting process>®

if rulesi="":
if "rdf" in rules._.keys():
if rules["rdf"]!="" and rules["rdf"]!=None:
content=str(RdfToJson.harvest rdf(dataset_url,rules))
else:
content=str(harvest _url._harvest _url(dataset url,rules))
#print(rules)

## content must be a string

19 https://github.com/opendatamonitor/ckanext-
htmlharvest/blob/master/ckanext/htmlharvest/templates/snippets/add_htmlharvest_button.html
20 https://github.com/opendatamonitor/ckanext-
htmlharvest/blob/master/ckanext/htmlharvest/harvesters/htmlharvester.py

© 2015 OpenDataMonitor | FP7-ICT 611988 52




D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &

PROGRAMMING STATUS REPORT 2

else:
content=str(harvest _url._harvest _url(dataset url,rules))
harvest object.content = content
try:
harvest object.save()
except:

pass

Table 7: Select available options to parse successive pages with HTML harvester™

if "btn_identifier® in document.keys():

if document["btn_identifier"]!=None and
document["btn_identifier ]!="":

cat_url=document[“"cat_url"]
dataset_identifier=document["identifier"]
btn_identifier=document["btn_identifier™]
action_type=document["action_type"]
try:

sleep_time=document[“sleep_time"]
except:

sleep_time=3

package_ids=javascript_case.ParseJavascriptPages
(cat_url ,dataset_identifier,btn_identifier,action_type,sleep_time)

print(package_ids)
else:
package_ids=harvester_final.read data(idl,backupi)
else:

package ids=harvester_final.read data(idl,backupi)

*! https://github.com/opendatamonitor/ckanext-
htmlharvest/blob/master/ckanext/htmlharvest/harvesters/htmlharvester.py

© 2015 OpenDataMonitor | FP7-ICT 611988

53




D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 2

Table 8: Parsing multiple URLs provided as landing pages in a catalogue22

cat_urls=[]
counter=0

text_file_mails = open("/var/local/ckan/default/pyenv/src/ckanext-
htmlharvest/ckanext/htmlharvest/harvesters/emails.txt", ™"a')
text_file_maintainer_mails=open("/var/local/ckan/default/pyenv/src/ckanext-
htmlharvest/ckanext/htmlharvest/harvesters/maintainer_emails.txt", "a')

print(mainurl)

log.info("Started®)

print(url)

it *," in url:
url=url._replace("\n","").replace("\r"," ") .rstrip(",")
cat_urls=url._split(",")

else: cat_urls.append(url)

print(cat_urls)

#t#custom sensibility cases handling
document=collection.find one({"cat _url":{"$regex": mainurl}})
it document!=None:
if "sensibility” in document.keys():
sensibility=document[“sensibility"]
else: sensibility=0.9

else: sensibility=0.9

print(“'sensibility set to: "+str(sensibility))
count=0
while count<len(cat_urls):

break _count=0

while endpoint In soupl:

2 https://github.com/opendatamonitor/ckanext-
htmlharvest/blob/master/ckanext/htmlharvest/harvesters/HarvestProcedure.py

© 2015 OpenDataMonitor | FP7-ICT 611988 54




D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 2 -

Table 9: Form validation checks for empty and incorrect values®

errors=""

language=str(datal[ " language”])
step=str(data] "step~])
cat_url=str(data[“cat_url"].encode("utf-87))
url=str(datal“url~])
if "http® not in cat_url and len(url)<8:
errors= “Invalid Catalogue URL, ™
iT “htep” not in url or len(url)<8:
errors =errors+"Invalid Dataset®"s URL, "
after_url=str(data[ "afterurl”].encode("utf-87))
catalogue date created=str(data[ “catalogue date created™])
catalogues_description=str(data[ “catalogues_description™])
catalogue date updated=str(data["catalogue date updated®])
identifier=str(data["identifier"])
catalogue_ country=str(data[ “catalogue country~™])
catalogue_title=str(data["catalogue_title"])
if catalogue_title==""":
errors =errors+" Invalid Title"
harvest_ frequency=str(datal[ “harvest_frequency~"])
btn_identifier=str(data[ "btn_identifier"])
action_type=str(data] "action_type~"])
iT errors!="":

vars = {"data”: data, "errors®: str(errors.rstrip(", “)+".")}

return render("htmlharvestl_html®, extra_vars=vars)

2 https://github.com/opendatamonitor/ckanext-
htmlharvest/blob/master/ckanext/htmlharvest/controllers/package.py

© 2015 OpenDataMonitor | FP7-ICT 611988 55




D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 2

try:

autofind=AutoMetadataFinder.AutoFindingElements(url)
except:

errors =errors+"Invalid Dataset®s URL, ™
vars = {"data”: data, "errors”: str(errors.rstrip(®, “)+".")}

return render("htmlharvestl_html®, extra_vars=vars)

Table 10: Fields, language and country, defined as drop-down button in HTML harvester’s registration form>

{% call form.select("language®, id="language®, label=_("Language®),
options=h.languages_list(), selected=data.language, error=errors.language)

%}
<span class=""info-block">
{{ _(C'This should include the Catalogue®s Language') }}
</span>

{% endcall %}

{% call form.select("catalogue_country®, id="catalogue country”,
label=_("Country®), options=h.countries_list(),
selected=data.catalogue_country, error=errors.catalogue country) %}

<span class=""info-block">
{{ _(C'This should include the Catalogue®s Country') }}
</span>

{% endcall %}

** https://github.com/opendatamonitor/ckanext-
htmlharvest/blob/master/ckanext/htmlharvest/templates/snippets/htmlharvest_form_first.html

© 2015 OpenDataMonitor | FP7-ICT 611988 56




D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 2

Table 11: Declare lists for languages and countries as helper functions”

def countries_list():
return [{"text": p.toolkit. (f.title()), "value: f}

for T in COUNTRIES]

def languages list():
return [{"text": p.toolkit. (F.title()), “value: f}
for f in LANGUAGES]

Table 12: Initialize lists with default language and country values®®

COUNTRIES = ["United

Kingdom®, "Albania”, "Andora*, "Armenia”, "Austria”, "Azerbaijan®, "Belaru
s®,"Belgium®, "Bosnia and
Herzegovina®, "Bulgaria“®, "Croatia”, "Cyprus”, "Czech

Republic®, "Denmark®, "Estonia”, "Finland”, "France~, "Georgia~, "Germany*
, Greece", "Hungary®,"lceland”, "lreland”, " ltaly", "Kazakhstan", "Latvia
", Liechtenstein®, "Lithuania®, "Luxembourg-®, "Macedonia*

, ‘Malta®,"Moldova“®, "Monaco", "Montenegro®, "Netherlands”®, "Norway", "Pol
and®, "Portugal ", "Romania“, "Russia”, "San

Marino®, "Serbia®, "Slovakia“®, "Slovenia®, "Spain”, "Sweden” , "Switzerland
", "Turkey~", "Ukraine®, "Vatican City"]

LANGUAGES =
[TEnglish®, "Bulgarian®, "Croatian”, "Danish”, "Dutch”, "Estonian”, "Finni
sh®, "French®, “"German®, "Greek", "Hungarian®, " Italian”, "Latvian®, "Lithu
anian®, "Maltese*", "Polish”, "Portuguese”, "Romanian®, "Slovak®, "Spanish*
, Swedish™]

2 https://github.com/opendatamonitor/ckanext-harvestodm/blob/master/ckanext/harvestodm/helpers.py
2 https://github.com/opendatamonitor/ckanext-
harvestodm/blob/master/ckanext/harvestodm/model/__init__.py

© 2015 OpenDataMonitor | FP7-ICT 611988 57




D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor ’
PROGRAMMING STATUS REPORT 2

Table 13: Quantity metrics

APl name Formula Description

Count number of metadata objects per
_ catdatasetstotfreq Total number of datasets
catalogue

_catdistribstotfreq | Count number of resources per catalogue | Total number of distributions

_catfreq Count number of different catalogues Total number of catalogues

_catdatasizetotal Sum resources’ size per catalogue (KB)

o Total distribution size
L Total Sum of resources’ size in Europe
_eddistribsize

(KB)
_categories Count categories found in Categories
_catpublishersfreq | Count unique publishers per catalogue Unique publishers
Table 14: Quality metrics
APl name Formula Description

. Number of Open licences per
_catopenlicfreq

total count of open licences / total catalogue

count of distributions with a licence % of Open licences aggregated

~edopenlicireq across Europe

© 2015 OpenDataMonitor | FP7-ICT 611988 58




D3.6  TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 2

_catnonproprformatfreq

_ednonproprformatfreq

total count of distributions with a
non-proprietary format / total count

of distributions with a format

Number of Non-proprietary

formats per catalogue

% of Non-proprietary formats

aggregated across Europe

_catmachinereadformatfreq

_edmachinereadformatfreq

sum(1 if a dataset has at least one MR
distribution, 0 otherwise)/ total count

of datasets

Number of Machine-readable

datasets per catalogue

% of Machine-readable datasets

aggregated across Europe

_catcoremetadatafreq

_edcoremetadatafreq

Defined set of fields as requirement:
- License: 0.25

- Author/Maintainer (maintainer field
exists only in CKAN): 0.25

- Organisation: 0.25

- Date released or Date updated: 0.25

sum(0.25 if a field from the set exists,

0 otherwise)/ total count of datasets

Number of Complete core

metadata per catalogue

% of Complete core metadata

aggregated across Europe

_cataccessabilityfreq

Defined set of fields as requirement:

- description (notes in database): 1 if

contains some text, 0 null/empty
- not a broken link: 1 if not broken

- author email/maintainer_email (only
in CKAN): 1 if present

sum(descrtiption && not_broken &&

author_email)/total count of datasets

Accessability in %

_catsitepagerank

Metric using Google and Alexa

traffic  ranking to define

catalogue’s discoverability

© 2015 OpenDataMonitor | FP7-ICT 611988

59




