OpenDataMonitor ‘b _7_

D3.3

PROJECT

Acronym:
Title:

Coordinator:

Reference:

Type:

Programme:

Start:

Duration:

Website:
E-Mail:

Consortium:

TOOL ARCHITECTURE AND
COMPONENTS/PLUGINS PROGRAMMING
STATUS REPORT 1

OpenDataMonitor
Monitoring, Analysis and Visualisation of Open Data Catalogues, Hubs and Repositories

SYNYO GmbH

611988
Collaborative project

FP7-ICT

November 2013

24 months

http://project.opendatamonitor.eu

office@opendatamonitor.eu

SYNYO GmbH, Research & Development Department, Austria, (SYNYO)

Open Data Institute, Research Department, UK, (ODI)

Athena Research and Innovation Center, IMIS, Greece, (ATHENA)

University of Southampton, Web and Internet Science Group, UK, (SOTON)

Potsdam eGovernment Competence Center, Research Department, Germany, (IFG.CC)
City of Munich, Department of Labor and Economic Development, Germany, (MUNICH)

Entidad Publica Empresarial Red.es, Shared Service Department, Spain, (RED.ES)

..° NIV TY Of I 1
OPI & soulpién sk [O oMU redes

R
INEY IMIS

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 1 :

DELIVERABLE

Number:
Title:
Lead beneficiary:

Work package:

Dissemination level:

Nature:

Due date:

Submission date:

Authors:

Contributors:

Reviewers:

D3.3

Tool architecture and components/plugins programming status report 1
ATHENA

WP3: Concept Design and Software Development

Public (PU)

Report (RE)

October 31, 2014

October 30, 2014

Vassilis Kaffes, ATHENA
Dimitris Skoutas, ATHENA
Thodoris Raios, ATHENA

Ejona Sauli, SYNYO
Michael Heil, SYNYO
Elena Simperl, SOTON
Yunjia Li, SOTON

Tom Heath, ODI
Amanda Smith, ODI
Bernhard Jager, SYNYO
Peter Leitner, SYNYO

Acknowledgement: The OpenDataMonitor project is | Disclaimer: The content of this publication is the
co-funded by the European Commission under the | sole responsibility of the authors, and in no way
Seventh Framework Programme (FP7 2007-2013) | represents the view of the European Commission or
under grant agreement number 611988. its services.

© 2014 OpenDataMonitor | FP7-ICT 611988

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 1

TABLE OF CONTENTS
S 1Yo o 1¥ T o o T o 6
1.1 SCOPE ANU PUIPOSE ..ceeiiieeeiieee ettt e ettt e e sitteeeestteeeeattaeeeeaasaeeesssseeeastaeeesassssesassaessansseeesnssseeann 6
1.2 Context Within the ODIM ProjJECt......ueeii et e e e e e e eare e e e e e s esabraaeeeeeeeennes 6
2 e Yo I of T =T o N 8
2.1 ATCNITECTUIE OVEIVIEW ...euiiiieiieeeecitieeee e e ettt e e e eeeeitraeeeeeeesestabeeeeeeeeesassaseesesseassssaeseeesnnnsnes 8
2.2 Processing WOTrKFIOWcoiiuiiiiiiee ettt et e e et e e e ate e e e bee e e earaas 10
3 Implementation of COMPONENTScccoiiiieeeeeeiiiiiiiiiieeeereeir e rrrenneesseessseeeennnssssssssssneennnnnssnnss 12
3.1 (01 - LoT={ Ul 2 (=T =4) i Y U URPROt 12
3.2 o] o AV, =T T T SRS 16
33 (VT Lo Fo L= W T VT o] oS RURR 19
3.4 VT Yo P L= B Y=Y o To LY L o) V2SR 21
3.5 HarmoniSation ENGINEuuuuuiiiiiiiiiiiiiiiiiiiiiiericierererere e e eeeeseeeeeseeeeeeeseteseeeeeseseeseseeeasaeesaeasees 22
3.6 ANAIYSIS ENGINE ..titiiiiee ittt ettt e et ee e e e e e e st te e e e e e e e ssbtaaeeeaeesesanstaaaeaaeeeaanssraneeaeaaans 26
3.7 AdMINISEration Pane@l.....ccueiiieiiiiiiie ettt sate e sbe e sbae e naaee e 29
3.8 DEMONSTIATION SITE .eeeiiiiiiiiiice ettt e e e e e et r e e e e e e s e saaneeeeeas 30
4 Conclusions and NeXt SEEPS ...ccveueiiiiiniiiiirniiiiirniieiieniieiinniesierniessennssesssnssssssenssssssenssssssennnss 31
LT (=T =T =T o Vol 33
6 APPENDIX .. uiiiiiiiiiiiiiniiississnss 34
6.1 Example of harvesting job configurationcccoueeiiiiii e 34
6.2 Example of raw collected metadata........cccccuveeiiciiie e 35
6.3 Dictionary for harmonising [ICENCESuuiiiiiii et e e e e e 40

© 2014 OpenDataMonitor | FP7-ICT 611988 3

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 1 -

LIST OF FIGURES

Figure 1: Overview of architecture and processing WOrkflowcccccceeeiviieiiiniie e, 8
Figure 2: New catalogue registration fOrmoeeiiii i e 13
Figure 3: Example illustrating an HTML page displaying the information about a dataset.................. 15
Figure 4: Filling in information for metadata extraction from HTML pagesccccceeevveeeriveeeecciveeennns 16
Figure 5: List of catalogues registered for harvestingoccceiiivciee e 18
Figure 6: Display status of harvesting JObuuiiiiii i 18

© 2014 OpenDataMonitor | FP7-ICT 611988 4

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 1 -

LIST OF TABLES

Table 1: Context of current deliVerable ... 6
Table 2: Internal Metadata SCREMAuueeeee ettt e e e e e et bt eeseeeeeesasssaaeseeaeees 23
Table 3: Snippet of the response of the APl method _commandsccccoeeecviiieeiiee i, 27

Table 4: Example of harvesting job configuration for the catalogues publicdata.eu and datos.gob.es34
Table 5: JSON document containing the metadata of a dataset returned by the CKAN Harvester 35
Table 6: JSON document containing the metadata of a dataset returned by the HTML Harvester-..... 38

Table 7: Dictionary for licences cleaning and harmonisationcccccceei i, 40

© 2014 OpenDataMonitor | FP7-ICT 611988 5

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 1 -

1 INTRODUCTION

1.1 Scope and purpose

The main driving idea behind the open data movement, which has been increasingly gaining
momentum over the past years, is that certain data should be freely available and usable for
everyone. The importance of this is widely recognised especially for open government data (OGD),
the availability of which may significantly contribute to the transparency and efficiency of a
democratic system. More generally, the availability and use of open data can have a positive impact

on society as a whole, stimulating economic and business growth.

The goal of the OpenDataMonitor (ODM) project is to make it possible for interested stakeholders to
gain an overview of this evolving open data “landscape”. More specifically, ODM aims to achieve this

goal by designing and developing:

e an extensible and customizable harvesting framework, for facilitating and automating as
much as possible the collection of metadata from diverse open data catalogues

e an integration and harmonisation workflow, for overcoming the high heterogeneity of
schemas, values and formats found in the various open data sources

e scalable analytical and visualisation methods, for allowing end users to explore the results in
an intuitive and user-friendly manner and obtain a comprehensive overview of the collected
information.

The purpose of this document is to present the overall architecture of the ODM platform, and to
report the status of the implementation for each of the main components involved. In particular,
Section 2 describes the design of the architecture for the ODM platform and explains the processing
workflow for collecting, integrating, analysing and visualizing metadata from various open data
catalogues. Then, Section 3 delves into each main component in more detail and presents the
current status of its implementation. Section 4 summarizes the progress of the work and presents

the next steps.

1.2 Context within the ODM project

The following table summarizes how this document is related to other deliverables in the project.

Table 1: Context of current deliverable

Deliverable Description

D2.1: Open data topologies, D2.1 provides, among others, an overview of the open data
catalogues and metadata landscape from a technical perspective, in terms of existing
harmonisation. open data portals, software and APls, as well as existing

© 2014 OpenDataMonitor | FP7-ICT 611988 6

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t

PROGRAMMING STATUS REPORT 1

(June 2014)

metadata standards and mappings among them. These
findings have been taken into consideration for identifying
the challenges and needs regarding metadata collection and
harmonisation, and thus making decisions for the design and
functionalities of the respective components.

D2.2: Monitoring methods,
architectures and standards analysis
report.

(July 2014)

D2.2 has provided an overview and comparison of existing
open data comparison platforms, catalogues and portals. This
has been used to identify novel features and functionalities to
be implemented in the ODM platform. Furthermore, it has
performed a state-of-the-art analysis of existing methods and
software tools for the various steps of the process, i.e.
metadata collection, storage and integration, which has
provided the foundation for implementing the ODM tools as
described in the current document.

D2.3: Best practice visualisation,
dashboard and key figures report.
(July 2014)

D2.3 defines the metrics to be computed over the collected
and processed metadata, and discusses different options and
methods for visualizing the results to the end users. Hence,
the work on implementing the analysis engine and the
demonstration site is based on that report.

D2.5: Open data resources,
platforms and APIs collection 1
(September 2014)

Related to, and in conjunction with, D2.1.

D3.1: Development of a scalable
open data monitoring concept and
framework design.

(May 2014)

This report was the first to provide an architecture overview
of the ODM platform and to identify the main components
needed, hence it constitutes the starting point and the basis
for the implementation work described here.

D3.2: Tool specifications, use cases,
mockups and functionalities status
report 1

(July 2014)

D3.2 is a complementary document to the current one,
focusing rather at the system level and the product
perspective, describing overall requirements and
functionalities, user roles and interfaces, while the current
document details the implementation status of individual
components.

D3.4: Visualisations, dashboards and
multilingual interface status report 1
(October 2014)

The work reported in D3.4 is conducted in parallel with that
of D3.3, with the former focusing on the implementation of
visualisations and dashboard on the demonstration site.

D3.6: Tool architecture and
components/plugins programming
status report 2

(August 2015)

Developing the components describing in the current
document is an ongoing process, with steps often done
iteratively to improve and/or extend implemented
functionalities according to testing and needs that arise. D3.6
constitutes the second part of this report, which will conclude
the progress of the work at the end of the project.

D4.1: Deployment of the tool
demonstrator finished.
(November 2014)

The components which are currently under implementation
as described in this document will be included in the first
demonstration of the tool that will be presented in D4.1

© 2014 OpenDataMonitor | FP7-ICT 611988

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor

PROGRAMMING STATUS REPORT 1

2 TOOL ARCHITECTURE

2.1 Architecture Overview

Open DataCatalogues
http://data.gov.uk/
http://datos.gob es/
http://dati.gov.it/

Metadata
Collection
Module Metadata
Harvesters
@) (2 ~
— L =, weeww
O—= |

Job Queue |

@ 4

Extracted
Metadata

Data Catalogue Job
Publisher Registry Job Manager Configuration |
Job g
Configuration
Metadata (6) - 5 -
Processing _— ~ B - —
Module - =
e Raw Metzdata
ging Repository
E’ D Metric
Definitions
Attribute _a®
Mappings = 5% l#,
N >
e
= Processed
Value Harmonization Metadata
 Mappings Scripts Repository Analysis
\ Engine
Harmonization (@)
Engine e
Administration Panel Demonstration Site
an @ "

ll“ll ad
| Data

/| Consumer

Visualisations / Reports Engine

Figure 1: Overview of architecture and processing workflow

© 2014 OpenDataMonitor | FP7-ICT 611988

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 1

Figure 1 provides an overview of the ODM platform architecture, illustrating the main components

and indicating the steps of the metadata processing workflow®. In particular, the ODM platform

comprises the following main modules and components:

e Metadata Collection Module. This part of the system is responsible for the task of metadata

collection from various open data catalogues. It further consists of the following

components:

(0]

Catalogue Registry. This component allows data publishers (or the ODM
administrator) to register catalogues for harvesting and monitoring. Registration is
done via a Web-based User Interface (Ul), where a form is filled in with some basic
information about the registered catalogue (e.g., title, URL), as well as some
additional information that is needed in order to setup and configure an appropriate
harvesting job for this catalogue. This provided information forms the catalogue
profile and is stored in the catalogue registry.

Job Manager. A harvesting job represents a task for harvesting metadata from a
registered open data catalogue. In particular, it provides the required configuration
that drives the harvesting process (e.g., which harvester to use, metadata extraction
rules to be applied). Harvesting jobs are maintained in a queue and are scheduled for
processing. This is handled by the Job Manager, which schedules the execution of
jobs, periodically or on demand, and is responsible for monitoring their process and
reporting the status of execution.

Metadata Harvesters. These are scripts executed by harvesting jobs in order to
perform the actual extraction of metadata from the respective catalogue. Different
harvesters may be implemented and used to address the different open data
platforms and APIs that exist. In this case, the configuration included in the
harvesting job specifies which harvester should be used and how. The main challenge
here is to deal with the trade-off between keeping the harvesters as generic as
possible and adapting to the specificities of each harvested catalogue.

e Metadata Processing Module. This part of the system is responsible for cleaning, integrating

and analysing the metadata that are retrieved from the various catalogues that have been

registered. It consists of the following components:

(0]

Harmonisation Engine. This component processes the raw, original metadata that
were retrieved by the harvesters and performs cleaning and integration tasks
required to obtain a homogenized dataset in terms of both attribute names and
attribute values.

Analysis Engine. Once the collected metadata have been mapped to a consistent
internal schema and representation, the analysis engine performs the required
operations (e.g. aggregations) in order to compute the metrics that have been

! This is an updated and elaborated version of the initial architecture design presented in D3.1.

© 2014 OpenDataMonitor | FP7-ICT 611988 9

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 1

defined for monitoring. It also makes these results available to the demonstration
site for visualisation and presentation to the end users.

o Demonstration Site. This module comprises several components for generating intuitive
visualisations and reports that are presented to the end users, allowing them to obtain a
comprehensive overview of trends in the evolving open data landscape, based on the
monitored open data catalogues.

e Administration Panel. This module comprises a set of dashboards that allows the ODM
system administrator to monitor, control and configure various aspects of the system’s
operation (e.g., configure options for metadata collection, monitor the status of harvesting
jobs, define rules for metadata harmonisation, specify templates for visualisations).

This report focuses in more detail on the first two modules, i.e. the metadata collection and
metadata processing. A more detailed description of the demonstration site, and a report on the
status of its implementation, is provided in D3.4. Furthermore, the administration panel will be
described in the second version of this report (i.e., D3.6), since this component is not part of the
main processing workflow but its purpose is instead to support the ODM system administrator, and

hence has not been the focus of the implementation so far.

2.2 Processing Workflow

In the following, we describe the main steps of the processing workflow. These steps are also

illustrated in Figure 1.

Step 1: Catalogue registration. The first step of the process is to register a new open data catalogue
for monitoring. This can be done by the ODM system administrator or other users that have the
“data publisher” role. It is done via a Web-based Ul, which presents a form requesting several
attributes that have to be filled in to indicate the profile of the catalogue and guide the metadata

collection process.

Step 2: Creation of harvesting job. Once a new catalogue is registered for monitoring and its profile
is filled in, a corresponding harvesting job is created, configured and submitted to the Job Manager.

The Job Manager inserts the job in the queue and schedules it for execution.

Step 3: Triggering of harvesting job. Periodically and/or on demand (as specified during a catalogue’s
registration), the Job Manager dequeues a harvesting job and initiates its execution. This is done by
invoking the appropriate Metadata Harvester and using the configuration properties specified in the

description of the job.

Step 4: Metadata extraction. The invoked Metadata Harvester connects to the corresponding open
data catalogue and applies the configured extraction rules to retrieve the relevant metadata. The

extracted metadata are stored in the Raw Metadata Repository. During this step, some preliminary

© 2014 OpenDataMonitor | FP7-ICT 611988 10

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 1

actions for cleaning and integrating the metadata also take place. For example, by applying the
specified extraction rules, some of the collected metadata are already mapped to the internal

representation.

Step 5: Staging of collected metadata. The raw collected metadata are heterogeneous and hence
need to undertake a series of cleaning and harmonisation operations before they become available
for further analysis and use. Nevertheless, for provenance reasons, it is desirable to also keep the
original metadata. For example, this can be useful if needed to trace back the initial form of a
processed item or if some steps of the cleaning and harmonisation need to be re-executed (e.g.
because new/improved cleaning or harmonisation rules have been configured). Thus, before further

processing takes place, the collected metadata are moved to the Staging Area.

Step 6: Metadata cleaning and harmonisation. Once moved to the staging area, a series of cleaning
and harmonisation operations is executed in order to transform the initial metadata to a consistent,
internal representation. This applies to both attribute names and values, and involves tasks such as
mapping attribute names from other schemas to the internal one, validating and normalising
different date formats, normalising names of file formats, licence titles, etc. The final results are

stored in the Processed Metadata Repository.

Step 7: Metadata analysis. After the cleaning and integration steps have been performed, the
metadata become available to the Analysis Engine. This applies the necessary aggregations or other

computations to calculate the key metrics that have been defined for monitoring.

Step 8: Accessing the results. Finally, the results are made available through an APl to other
components, in particular to the Demonstration Site, which produces various charts, visualisations
and reports for the end user. It is possible to request either the metadata records themselves (e.g.
return all the metadata of the datasets in a given catalogue) or compute aggregate results for various

metrics (e.g. return the number of datasets uploaded in the previous month).

© 2014 OpenDataMonitor | FP7-ICT 611988 11

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 1

3 IMPLEMENTATION OF COMPONENTS

In this section, we describe each component in more detail and we report on the current status of its

implementation.

3.1 Catalogue Registry

The Catalogue Registry allows the ODM administrator or a user who has the “data publisher” role to
register new open data catalogues for monitoring. For this purpose, we have implemented a Web-
based Ul that allows the user to provide the necessary information for registering the catalogue and
configuring the corresponding harvesting process for it. For the latter, the information to be provided
depends on the type of harvester that will be used for collecting metadata from this catalogue. As
will be explained in more detail in Section 3.3, we have currently implemented two different
harvesters, one targeting catalogues deployed on a CKAN platform? and one relying on HTML
scraping that serves as a general-purpose harvester to handle the remaining cases. This distinction is

reflected in the catalogue registration process, as will be shown below.

Moreover, instead of implementing this component as a stand-alone Web application, we have
integrated it in a customized CKAN instance. This has the benefit that we can reuse infrastructure
and functionalities already provided by CKAN®. For example, during the implementation and testing
stage, the collected metadata are also stored in the internal database of this CKAN instance, thus

having a basic Web Ul to search and explore the collected content.

Figure 2 displays a screenshot of the Web form used to register a new catalogue. In the example
shown, the URL of the catalogue to be monitored is http://publicdata.eu/. Moreover, a title and a
description for this catalogue are given. Then the type of harvester to be used is specified. In this
case, the catalogue is deployed on CKAN, hence this choice is selected, which means that the CKAN
harvester will be used for metadata collection. The update frequency indicates whether a harvesting
job for this catalogue should be configured to be run periodically, and how often. The available
options are “monthly”, “weekly”, “daily” and “manually”. The latter means that the job is not
scheduled to run periodically but it is triggered manually instead by the ODM administrator.
Currently, since the Job Manager is not yet fully implemented, this is the only option supported in
practice. Finally, the Configuration attribute applies to the ‘CKAN’ type. As will be explained in
Section 3.3, the CKAN harvester relies on the ckanext-harvest extension?, a remote harvesting

extension for CKAN, which supports a number of configuration options to control the harvester’s

? http://ckan.org/

* The rationale for following a CKAN-oriented approach in this project, as has been explained in previous
deliverables (e.g. D3.1), is based on the fact that it is open source, has a rich set of features, and it seems to be
the most widely used platform among the existing ones, with an even growing trend.

* https://github.com/ckan/ckanext-harvest

© 2014 OpenDataMonitor | FP7-ICT 611988 12

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 1

behaviour. These are defined as a JSON (JavaScript Object Notation) object, which can be entered in

this field. If the field is left empty, the default configuration is used.

URL: | htip://publicdata.eu/

Title: | Europe's Public Data

URL: 83.212.122.164:4500/harvest/europe-s-public-data | Edit

Description: | PublicData.eu is a Pan European data portal, providing access to open, freely
reusable datasets from local, regional and national public bodies across Europe.

You can use Markdown formatting here

Source type: = CKAN @
JHTML @

Update frequency: | Monthly j

Configuration:

Figure 2: New catalogue registration form

When registering a non-CKAN catalogue, some additional information needs to be provided. This is
needed because in this case the harvesting is done via the HTML Harvester, which relies on HTML
scraping. Hence, this information is required in order to configure appropriate extraction rules to be
applied when parsing the HTML code of a Web page displaying the dataset. This is done again by

filling in a Web form, according to the process explained below.

Typically, in an HTML page, the information about a dataset is presented in a structured manner
using lists and/or tables. Figure 3 illustrates an example of such an HTML page displaying a randomly

selected dataset taken from the catalogue datos.gob.es”. The information comprises the title of the

> http://datos.gob.es/

© 2014 OpenDataMonitor | FP7-ICT 611988 13

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 1

dataset, displayed at the top of the page, a description, the publisher, category and tags, contained
files, dates, etc. In most cases, labels are used to indicate what the information refers to, e.g.
“Descripcion”, “Publicador”, “Categorias”, “Fecha de creacion”, etc. Note that since all these HTML
pages in a catalogue are produced automatically using the same template, these labels are the same
for all the set of pages within the same catalogue. Thus, during the registration process, for each
attribute to be extracted, the corresponding label used in this catalogue is indicated. Still, there are
also attributes for which no label is used. For example, the dataset’s title in this case is visually
distinguished due to its position and size, instead of using a label such as “Title” as a prefix. This is
addressed as follows. When filling in the registration form for this catalogue, the user indicates that
there is no label for the attribute “title”. Instead, the user selects a random HTML page presenting a
dataset, and provides in the form the URL of this page and the value of the title attribute found there
(in this example: “Afecciones Importantes de Trafico”). As will be described in Section 3.3, the HTML
Harvester uses then this information to create an extraction rule for extracting the titles of the

datasets from the rest of the HTML pages found in this catalogue.

Figure 4 displays a part of the form that is filled in when registering a non-CKAN catalogue. For each
attribute, the user indicates whether a label is shown in the HTML page or not. If so, the name of the

label is indicated, otherwise the value of the item in a randomly selected HTML page is inserted.

To further reduce the burden for the user who registers a new catalogue, we have implemented the
following mechanism. Assume the case of the aforementioned example. Once this catalogue is
registered, the system “remembers” that the label “Publicador” has been used for the attribute
“Publisher”. Then, during the registration of a new (non-CKAN) catalogue, as soon as the user
provides the URL of a sample HTML page of that catalogue, the system first recalls all the labels that
have been used so far for this attribute, and if any of these labels is found in the HTML page, the
corresponding field in the form is filled in automatically. Consequently, the user only needs to check
and modify those fields for which the system’s “guess” was not correct, and also to fill in any

remaining ones for which the system was not able to find any previously known label.

Once the process is finished, the information is stored and a harvesting job is created. This is stored
in the form of a JSON document in a MongoDB database. The result for the presented examples,
publicdata.eu and datos.gob.es, is listed in Table 4. Notice that in the latter case, where the
harvesting is performed by the HTML Harvester, two JSON documents are generated. The first one is
analogous to that for the catalogue publicdata.eu, with the difference ""type': "html" instead
of ""type'": '"‘ckan", while the second one contains the instructions that will guide the metadata

extraction for each attribute.

© 2014 OpenDataMonitor | FP7-ICT 611988 14

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *

PROGRAMMING STATUS REPORT 1

Afecciones Importantes de Trafico

Descripcion:
Relacién de calles o viales de Zaragoza afectadas por alguna incidencia. Se describe el tramo afectado,
posibles desvios, las fechas de inicio y finalizacién estimada, el motivo y otras observaciones.

© Publicador: Ayuntamiento de Zaragoza
(OTROS)

© cCondiciones de reutilizacién: > http://www.zaragoza.es/ciudad/servicios
lavisolegal .htm#condiciones

Categorias: Transporte

Etiquetado como: movilidad urbana via publica Trafico incidencias

Distribuciones

Nombre Acceso Formato / Tamano Accesos +info
Afecciones Importantes de Trafico _|JSON 0
Afecciones Importantes de Trafico E] RSS 0

Informacion Adicional
© Fecha de creacion: Viernes, 12 Septiembre, 2014

Fecha_de y‘|t|rna Viernes, 12 Septiembre, 2014
actualizacion:
Diaria

©

© Frecuencia de
actualizacion:

©

Idioma del conjunto de

datos: SRR

Figure 3: Example illustrating an HTML page displaying the information about a dataset

© 2014 OpenDataMonitor | FP7-ICT 611988

15

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor e
PROGRAMMING STATUS REPORT 1

Publisher: Publicador:
Feature: |abel j

Geographic Coberiura geografica:
Coverage:

Feature: Label j

Temporal Cobertura temporal:
Coverage:

Feature: Label j
Release Date: Fecha de creacion:

Feature: Label j

Contact Point:

Feature: Value j

Keywords/Tags: @ Etiquetado como:

Feature: Label j

Figure 4: Filling in information for metadata extraction from HTML pages

3.2 Job Manager

The Job Manager is the component responsible for scheduling, initiating and monitoring harvesting
jobs. At the current stage of the implementation, the execution of a harvesting job is triggered
manually; however, in future versions of the system this will be included in a background process
that will schedule jobs to run periodically, according to the periodicity specified when registering a

catalogue (e.g., monthly).

Similarly to the Catalogue Registry, the Job Manager is integrated in the customised CKAN instance
and can be accessed there; moreover, the component is designed to reuse the same queue that the

ckanext-harvest extension uses when managing jobs that collect metadata from other CKAN

© 2014 OpenDataMonitor | FP7-ICT 611988 16

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor r
PROGRAMMING STATUS REPORT 1

catalogues. That is, all harvesting jobs are represented and stored in the same way, and they are
inserted in the same queue for execution; then, when a job is triggered, it is checked whether the

CKAN or the HTML harvester should be invoked to carry out the task.

Figure 5 shows the list of catalogues registered for harvesting. On the left side, the facets
“frequency” and “type” are provided to make it easier to navigate through the list. Once a catalogue
is selected, the status of the harvesting job can be displayed. This includes the date when the job was
first created, when the last execution was started and finished, and the current status. It also displays
a summary of results. An example is shown in Figure 6, which refers to the catalogue publicdata.eu.
Notice that during the execution of a harvesting job, the process may be interrupted on purpose or
accidentally for various reasons (e.g., due to a network failure). In this case, it is possible to resume
the process later, continuing from the same point rather than starting a new job from the beginning.

Thus, the execution of a job may span over several days, which is in fact the case in this example.

In the case of the CKAN Harvester, the aforementioned functionality is provided by the ckanext-
harvest extension itself. In the case of the HTML Harvester, this has been implemented as an
additional feature in order to avoid re-harvesting a catalogue from scratch when an unexpected error
occurs. More specifically, this is achieved as follows. When the HTML Harvester starts collecting
metadata from a catalogue, it creates a file in which it writes the progress of the process. This is
measured in terms of “pages” that have been processed. Notice that, since a catalogue typically
contains a large number of datasets, it employs paging to allow navigating through them. For
example, in the case of the catalogue publicdata.eu, one can navigate directly to the n-th page of the
listed datasets by using the URL: http://publicdata.eu/dataset?page=n. Leveraging this
mechanism, when a page is fully harvested, it is logged in the aforementioned text file. Thus, if the
job is interrupted and then resumed, it first checks this file (if it exists), and continues from the page

after the one noted there.

© 2014 OpenDataMonitor | FP7-ICT 611988 17

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor ’
PROGRAMMING STATUS REPORT 1

Datasets Organizations Groups About _

A / Harvest Sources

Y Frequency Clear All
MANUAL (32)
Show More Frequency
41 harvest sources found Order by: | | ast Modified N
Y Type Clear All
kan (24
dend) offenedaten_de
html (16) offenedaten_de.

Show More Type

opendata_service-bw_de

(w]
T

data_gov_gr

Figure 5: List of catalogues registered for harvesting

Datasets Organizations Groups About _

4 / Harvest Sources / publicdata_eu / Admin
ublicdata_eu o i
] I @ Dashboard = Jobs (& Edit < Reharvest Clear @ View harvest source
harvesting :
http://publicdata.eu/ read
mare Last Harvest Job
Datasets 27506 added 25971 updated 1749 deleted
48465 Id 1615d1cf-2271-4bd9-98dc-3f07b92e 154
Created May 27, 2014, 15:31
Started May 27, 2014, 15:32
Finished Jun 13, 2014, 13:30
Status Finished

Figure 6: Display status of harvesting job

© 2014 OpenDataMonitor | FP7-ICT 611988 18

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 1

3.3 Metadata Harvester

This component is responsible for performing the actual task of collecting metadata from the
registered catalogues. In particular, to handle the different types of open data platforms and APIs,
two different metadata harvesters have been implemented, the CKAN Harvester and the HTML

Harvester, which are described next.

3.3.1 CKAN Harvester

As already mentioned above, this harvester essentially relies on the ckanext-harvest
extension®, which allows a host CKAN instance to collect and import datasets and/or metadata from
other CKAN catalogues. This is useful, for example, for a national catalogue that also aggregates
datasets from other, local catalogues. In turn, this extension relies on the CKAN API’, which allows a
client to access -and potentially modify- the contents of a CKAN catalogue. Among others, the API
includes a function that returns a list containing the identifiers of all the datasets contained in the
catalogue, as well as a function for retrieving the complete set of metadata for a given dataset. In
fact, the APl itself has a rich set of features, allowing performance of more complex searches or even
to modify information -assuming that the client has appropriate authorisation- but the two
aforementioned functions are the ones used by the ckanext-harvest extension. Moreover, we

use this extension to collect only the metadata of the datasets and not the datasets themselves.
The harvesting process comprises three steps:

e gather: in this step, the API is called to retrieve the IDs of all the datasets available in the
target catalogue;

e fetch: in this step, for each dataset ID in the list, a call is issued to retrieve its metadata;

e import: this step stores all the retrieved content in the internal database of the host CKAN
instance.

In our case, we have modified the import step of the process, since we are interested in storing the
collected metadata not in the database used by CKAN but in our own database, the Raw Metadata
Repository (see Figure 1), which is essentially a collection of JSON documents stored in a MongoDB
database, as described in Section 3.4. This involves also some content manipulation to replace
certain special characters or keywords that are not allowed when importing the data in the
MongoDB database. Another change concerns the fact that the ckanext-harvest extension is
intended for retrieving both the metadata information of the datasets as well as the datasets

themselves. In our case, we only store the metadata records, while for the datasets we keep only the

6 https://github.com/ckan/ckanext-harvest
7 http://docs.ckan.org/en/ckan-2.2/api.html

© 2014 OpenDataMonitor | FP7-ICT 611988 19

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 1

URL and some derived information (file format, file size, MD5 checksum) that is needed to compute

some of the metrics.

A sample JSON document containing the metadata of a dataset retrieved by the CKAN Harvester is

shown in Table 5.

3.3.2 HTML Harvester

The ckanext-harvest extension covers only the case of CKAN catalogues, since it relies on the
CKAN API being provided by the target catalogue to be harvested. Hence, different solutions are
needed to cover those catalogues that are not deployed on CKAN (or, in some cases, catalogues that
are deployed on CKAN but do not allow access to the API). One possible approach is to implement
custom harvesters to address specific cases. This can be done by creating extensions similar to
ckanext-harvest that implement the harvesting interface® specified by CKAN. Indeed, a few
such custom harvesters already exist that target specific catalogues’, such as daten.berlin.de,

data.london.gov.uk, opendata.paris.fr, etc.

However, such an approach is not easily scalable when the aim is to monitor a large number of
different catalogues. Instead, we have implemented a rather generic harvester that is based on
scraping the contents of HTML pages, and hence does not rely on specific APIs or other knowledge of
the underlying platform on which the targeted catalogue is deployed. Instead, the idea is to navigate
to the pages of the catalogue presenting the metadata of each dataset, to parse and analyse the
HTML tree structure of the page, and then extract from it the elements of interest, as described

above.

The first part, i.e. parsing the HTML code of the page and creating the corresponding tree
representation, we use the Python package Beautiful Soup™. The second part, i.e. locating the
appropriate elements that contain the information of interest, is driven by the information provided
during the registration of the catalogue (see Section 3.1). Recall that when a catalogue is registered
which is to be harvested using the HTML Harvester, a sample HTML page displaying a randomly
selected dataset is given, together with an indication of the elements that are to be extracted (either
their labels, if available, or their values). Based on this example, the relevant paths in the HTML tree,
for each attribute to be collected, are identified and stored in the job configuration. The HTML
Harvester leverages this information when processing each HTML page of the harvested catalogue to
locate the relevant elements in the HTML tree. Notice that this step is rather involved, since one

needs to allow for a certain level of tolerance when searching in the HTML code of a page, e.g.

8 https://github.com/ckan/ckanext-harvest#the-harvesting-interface
o https://github.com/okfn/ckanext-pdeu/tree/master/ckanext/pdeu/harvesters
10 http://www.crummy.com/software/BeautifulSoup/

© 2014 OpenDataMonitor | FP7-ICT 611988 20

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 1

allowing labels to match approximately if no exact match is found, skipping certain HTML tags (e.g.,

line breaks) in certain cases, etc.

The HTML Harvester has been developed as a CKAN extension, implementing the CKAN harvesting
interface mentioned above. Hence, it also implements the three steps specified above, i.e. gather,
fetch and import. However, in this case, retrieving the dataset identifiers is not done separately from
collecting the metadata of each dataset (as opposed to ckanext-harvest in which these two
steps are naturally distinguished due to the two different functions supported by the CKAN API);
instead, the whole metadata extraction process actually takes place during the gather stage, and

then they are imported in the Raw Metadata Repository in the import stage.

A sample JSON document containing the metadata of a dataset retrieved by the HTML Harvester is

shown in Table 6.

3.4 Metadata Repository

The Metadata Repository is a database used to store the collected metadata, both the raw ones that
are retrieved by the Metadata Harvester as well as the processed ones that are produced by the
Harmonisation Engine (see Figure 1). For this purpose, we are using a MongoDB database. The
rationale for this choice has already been explained in previous deliverables (D2.2 and D3.1). In a
nutshell, MongoDB is a document-oriented database, perhaps the most popular one in the category
of NoSQL databases. One of the main advantages is that it does not require a specific schema to be
defined in advance for storing the data, which is important in our case since the raw collected
metadata are quite heterogeneous, using different structures and attribute names. Instead, it allows
the metadata to be stored and queried directly as JSON documents, such as those illustrated in Table
5 and Table 6.

More specifically, there are two document collections in the database. The first one is the Raw
Metadata Collection, where the documents returned by the Metadata Harvester after each
harvesting cycle are inserted. The second is the Processed Metadata Collection, which holds the
results of running the Harmonisation Engine on the initial documents. More precisely, before
executing the Harmonisation Engine, the contents of the Raw Metadata Collection are scanned, and
those that have not been already processed (indicated by a special “flag” used to denote the status
of each document) are copied to a temporary collection, referred to as the Staging Area, which is

then used as input to the Harmonisation Engine.

The basic method for querying documents in a document collection is the function

db.collection.find(<criteria>, <projection>). For example, the query:

db.odm.find({ license: "Creative Commons Attribution® })

© 2014 OpenDataMonitor | FP7-ICT 611988 21

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 1

returns all the documents in the collection odm that have an attribute license with value

Creative Commons Attribution, while the query:

db.odm.find({ catalogue url: “http://publicdata.eu” })

returns all the documents that have an attribute catalogue url with value
http://publicdata.eu. Examples of more complex queries are included in Section 3.6.

3.5 Harmonisation Engine

The metadata extracted from the Metadata Harvester from the various catalogues are quite
heterogeneous (see Deliverables D2.1 and D2.2 for a survey on the various existing metadata
schemas as well as mappings between them). Moreover, even within the same catalogue, it is often
not required that a data publisher strictly adheres to a specific metadata schema when publishing a
dataset. This is done to lower the barrier and make it easier and quicker to make datasets publicly
available. For example, CKAN specifies a few basic metadata attributes as “core”, such as title,
url, author, maintainer, license, notes, tags, resources, while allowing arbitrary,
user-defined key-value pairs to be added by the data publisher under a field called “extras” to
provide any additional information about the dataset'’. The latter may contain information on

various other useful attributes, such as geographic coverage, release date, language, etc.

As a result, before being able to analyse the collected metadata and compute any useful metrics, it is

necessary to deal with this heterogeneity, involving:

e different structures: for example, the same attribute may appear as a top-level element in
some schema or nested within another element in some other schema;

e different attribute names: very often the same type of information is listed under attributes
with different name variations, such as license, license id, license_ title;
release date, date released;

e different value representations: there exists also high diversity in terms of value
representations, such as use of abbreviations, different date formats, use of country names
versus country codes, different languages, etc.

Consequently, to be able to more accurately and reliably analyse the data and compute the required
measurements, we need to clean and map them to an internal representation. For this purpose, we
have designed and use an internal metadata schema, which focuses on the attributes that have been
identified as needed for the various metrics to be computed eventually. Moreover, this schema is

designed to be close to that of CKAN, so that it is possible to import the processed metadata into a

1 http://docs.ckan.org/en/ckan-1.8/domain-model.html

© 2014 OpenDataMonitor | FP7-ICT 611988 22

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 1

CKAN repository without needing any significant transformations. The schema is shown in the

following table.

Table 2: Internal metadata schema

e 1d (type:string) //checksum on the dataset's url
e title (type:string) //title of the dataset
e notes (type:string) //short description of the dataset
e author (type:string) //the entity that is considered as the author of the dataset
e maintainer (type:string) //the entity who is responsible for maintaining the dataset
e organization (type:string) //the entity that is considered as the publisher of the dataset
o catalogue url (type:string) //the URL of the catalogue where the dataset was found
e tags (type: array of strings) // list of tags describing the dataset
e num_tags (type:int) //automatically calculated to store the number of tags in order to facilitate
computation of relevant metrics
o license_ id (type:string) //the licence under which the dataset is provided
e resources (type:array) //a list of resources (i.e. files) that comprise the dataset
o0 url (type:string) //the URL of the resource
0 checksum (type:string) // automatically computed hash of the URL, used to facilitate
finding duplicate URLs
0 mimetype (type:string) //the media type of the resource (e.g. text/html)
o Tormat (type:string) //the file format of the resource (e.g. csv, rdf, xIs)
O sSlize (type:int) //the file size of the resource (measured in bytes)

e NuUM_resources (type:int) // automatically calculated to store the number of resources in
order to facilitate computation of relevant metrics

e language (type:string) //the language of the metadata of this dataset

e country (type:string) //the country the dataset refers to

e state (type:string) //the state the dataset refers to

e clity (type:string) //the city the dataset refers to

e date _released (type:date) // the date the dataset was first released (in the monitored
catalogue)

e date_updated (type:date) // the date the dataset was last updated (in the monitored
catalogue)

o metadata_created (type:date) //the date the dataset was first harvested

e metadata_updated (type:date) //the date the dataset was last harvested

o update_ frequency (type:string) // the frequency of updates for this dataset (e.g. monthly,
yearly)

e category (type:string) //the theme of the dataset (e.g. economy, transport)

o platform (type:string) // the type of platform of the monitored catalogue (currently allows
distinguishing according to the two types of harvesters used, i.e. CKAN/HTML)

© 2014 OpenDataMonitor | FP7-ICT 611988 23

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 1

Consequently, the metadata extracted by the harvesters need to be mapped to the attributes of the
above described schema. For the CKAN Harvester, two cases are distinguished. For those attributes
belonging to the set of core metadata of the CKAN domain model, the mappings are known in
advance; essentially, there is a direct correspondence to our schema (e.g., title 2 title; notes
- notes; author - author, etc.). For the rest, i.e. those attributes that appear under the
element extras, mapping rules have been specified to deal with different naming variations. In
practice, this was done by harvesting metadata from a number of CKAN catalogues and then
examining the various attribute names that appear under the node “extras” and defining mappings
to the attributes in the internal schema. Once this has been done for a few catalogues, subsequent
cases can be addressed by applying an already specified mapping. For the HTML Harvester, the
mappings have been already indicated during the phase of catalogue registration. Recall that, as
described in Section 3.1, for each metadata attribute to be extracted from the HTML pages, an
extraction rule is created to identify its location in the page; hence, this also serves as a mapping, so
that the JSON document returned by the HTML Harvester already complies with the above defined

internal schema.

Notice that the schema also includes certain attributes whose values are not explicitly included in the

original metadata but are instead computed based on other information. In particular:

e num_tags and num_resources: these attributes store the size of the arrays tags and
resources, respectively; this is done for reasons of convenience and performance, so that
these values are readily available to queries computing relevant metrics, such as average
number of tags or resources for the datasets of a given catalogue.

e MD5 checksums on dataset URL and resource URL: these values are computed with the
Python module hashlib.md5()and are also stored in order to facilitate further
processing, such as quickly identifying (exact) duplicates.

e mimetype, format, size of a resource: this is key information for computing various
metrics that provide useful insights for the monitored open data catalogues, such as most
common file formats, average size of provided files, etc. Usually, the file format of the
resource is provided as a metadata attribute or can be trivially extracted from the resource’s
URL suffix; however, the mimetype and size information are often not included in the original
metadata record or may not be accurate. Therefore, we compute instead this information by
using the provided URLs of the resources included in the dataset. The Python module
urllib2_headers is used for this purpose as shown by the code below:

size = urllib2._openurl(<resource_url>)_headers["Content-Length']
and

mimetype = urllib2.openurl(<resource_url>)_headers["Content-Type]

© 2014 OpenDataMonitor | FP7-ICT 611988 24

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 1

where <resource_url> is the URL of the resource for which the size and mimetype information

is requested.

The next main aspect to address is to clean and integrate the values of those attributes. This involves
dealing with different value formats and representations, naming variations, synonyms etc. We

outline below the main cases addressed so far in the implementation.

e license_id. Licence information is typically found in the original metadata under the
attributes license, license_id or license_title. To clean and integrate the
values, we have semi-automatically created a dictionary as shown in Table 7. The list shows
the various types of licences that have been found in the metadata collected so far. The
dictionary is used to normalize the values by mapping to the same term several variations or
translations of the same licence (shown in brackets).

e resources/format. Similarly, we have created a dictionary to normalize file formats of
the dataset resources. Besides the fact that a large variety of file types are encountered in
the monitored catalogues, it is often the case that the value found in this attribute refers to
the mime type of the resource or the corresponding application (e.g. excel) instead of the file
extension, hence there exist again several variations that need to be mapped to the same
value to allow for further comparisons and aggregations. Note that this dictionary, as also the
aforementioned one for licenses, will be available in the GitHub repository.

o language, country. To represent languages and country names, the I1SO 639-1'? and 1SO
3166-1" codes are used, respectively.

e date_released, date_updated. There exists a high diversity in the use of date formats
in different catalogues or in the metadata of different datasets. To normalize these values,
we use the dateuti | Python module. Although this was adequate for many of the cases
we have encountered, the library is not able to parse successfully dates which contained non
numeric characters, e.g. sdbado, 9 Julio, 2005. To handle these cases, a dictionary mapping
was defined that translates non-English date related terms (i.e. names of months and days)
to their English equivalents, before trying to parse the date format with the dateutil
library. Hence, such values are also transformed to a normalized representations, e.g.
sabado, 9 Julio, 2005 = 2005-07-09 00:00:00+00:00 (Spanish), 14 maggio 2012 > 2012-04-
14 00:00:00+00:00 (Italian). Finally, a problem that we have encountered is that many date
fields contain only the year that a dataset was released or updated. To transform these
values to this normalized representation, we followed the convention of filling in the missing
values by assigning to it the first day of the first month of the corresponding year. That is, if
the release data of a dataset is indicated as 2009, the assigned normalized value is 2009-01-
01 00:00:00+00:00.

2 http://www.iso.org/iso/language_codes.htm
B http://www.iso.org/iso/country_codes.htm

© 2014 OpenDataMonitor | FP7-ICT 611988 25

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 1

3.6 Analysis Engine

The purpose of the Analysis Engine is to provide access to the collected metadata after they have
been processed by the Harmonisation Engine, as well as to calculate a series of key metrics that are

used for monitoring. Hence, there are two main operations involved:

e Retrieval. The Analysis Engine allows the Demonstration Site -or any other external
components that may need to access the contents of the Processed Metadata Repository- to
retrieve the collected metadata after their harmonisation has taken place. This can be done
by retrieving first the list of monitored catalogues and then requesting the metadata of the
datasets that have been collected from a specific catalogue. This allows the Demonstration
Site or other components to obtain all or parts of the processed metadata in order to
perform any further processing (e.g. querying, analysis) required by end-user applications.

e Aggregation. Moreover, the Analysis Engine computes the various aggregations specified by
the metrics that have been defined for monitoring, and makes those results accessible to the
Demonstration Site or other components as well. These computations essentially involve
aggregate queries (max, min, average) on several dimensions, such as per catalogue, country,
date, category or licence type.

To hide the complexity of directly querying the contents of the database, and to make the design
more modular, both of the above mentioned sets of operations are exposed via a RESTful API [1], as

had been already designed in previous deliverables (see D3.1 and D3.2).

More specifically, the REST interface that was used as a basis for our implementation is the
s/eepy.mongoose“. Sleepy.mongoose is an open source REST interface for MongoDB written in
Python. The pymongo library™ is also needed in order to connect and run queries to the MongoDB
database. Some additional customisations were also made to accommodate our specific needs, as

described below.

The APl is running as a server and listens to port 27080. The URL of a request consists of three main

parts:

e the base URL, which has the form: http://[hostname:27080]/api/v1.0/, where
hostname is the IP address of the server where this module is hosted;

e the name of the called method, added at the end of the base URL with the underscore as a
prefix;

e any arguments that can be provided for filtering the results. These follow the method name,
using the character ? as a separator. Multiple arguments can be provided, which are then
separated with the character &.

" https://github.com/10gen-labs/sleepy.mongoose/wiki
' http://api.mongodb.org/python/current

© 2014 OpenDataMonitor | FP7-ICT 611988 26

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 1

Hence, the full form of the URL of a request is:
http://[hostname:27080]/api/v1.0/_method?argl=valuel&arg2=value2
For example:

http://83.212.122.164:27080/api/v1l/_find?attribute=metadata created&
start _date=2012-7-30

returns results by filtering on the attribute metadata_ created.
Responses are formatted in JSON and consist of the following fields:
e 0k, which has the value 1 if the query succeeded, or 0 otherwise;
e result which is an array of documents from the database;

e id which is not always present and is used as cursor id whenever results need to be returned
in multiple pages (optional);

The implemented methods can be separated conceptually in three high level categories that provide

the means for a third party tool to have full access to the processed metadata.

The first one is the method _commands that returns a list of all implemented functions that are
provided by the APl with a very basic form of documentation. A snippet of the response of this

method is shown below:

Table 3: Snippet of the response of the APl method _commands

{
"ok™: 1,
“result: [
{
' catalogues™: {
"help”: "URLs of harvested catalogues and their
total number of datasets™
by
3,
{
" catdatasetsfreq”: {
"help"”: "Frequency of catalogued datasets"
ks
Fo---
13

© 2014 OpenDataMonitor | FP7-ICT 611988 27

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 1

The second group includes the functions that return the results for the defined metrics. These
functions perform aggregation queries to the MongoDB database using the aggregation pipeline
framework'®. Based on the type of request, the data processing is either done on the fly or cached.
This is highly dependent on the attributes involved in the aggregated queries and whether it is
meaningful or quite feasible with respect to time restrictions to be harvested in the first phase or
not. For example, computing a metric that requires calculating the percentage of resources' broken
links is done offline and the result is cached and used when requested through the API, since the
process of accessing links to verify them is a long running task. Other metrics, such as number of

datasets in a given catalogue filtered by license type, are computed online.

The last category provides access to raw datasets in the repository. It contains two functions _find
and _more. The former returns the raw datasets, while the latter allows accessing multiple dataset
pages, if they exist. The _Ffind method, used without any arguments, returns all the datasets
contained in the database. The structure of the response is in accordance to the schema presented in

Table 2. The method supports three arguments:

e batch_size, that is the number of records that are returned by each call of the API;
defaultis 15

e catalogue_url, that restricts the results only to those belonging to a certain catalogue

e odm_1id, thatis the unique id of a dataset; the method returns the metadata record of this
specific dataset.

An example of getting the metadata records of the datasets harvested from the national catalogue of

the United Kingdom in groups of 50 is shown below:

http://83.212.122.164:27080/api/v1.0/_find?batch_size=50&catalogue_u
ri=http://data.gov.uk

In order to access subsequent records after the first page, the _more method can be used. This
method takes as argument the 'id' value that is contained in the JSON result after calling the _find
method. For instance, the returned JSON in the above example has the value of 0 in the key 'id'. We

can use this value to access the next batch of datasets of size 50 as follows:
http://83.212.122.164:27080/api/v1.0/_more?id=0

The aggregation pipeline framework’s general form that was used for calculating the desired metrics

is as shown below:

' http://docs.mongodb.org/manual/core/aggregation-pipeline

© 2014 OpenDataMonitor | FP7-ICT 611988 28

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 1

db.odm.aggregate([
{$match: {“<attribute_to_match>: {“$nin’:[“”,null]}}},
{“$unwind”: { “<attr_contained_in_array>’"},
{“$group”: {°_i1d’: “<S$attr_value>’,
other_needed calculated values...}},
{“$sort”: {“counter’: 1 or -1}},
{“$project’: {“attrl>":1 or 0, “<new_attr>’:’<$attr2>"}}
D

where:

e 3$match is used to exclude all null or empty attribute values related to specific field;
e Sunwind is used to deconstruct fields that are stored as arrays in the document;

e $group aggregates specific attributes in the document to produce specific metrics;
e $sortis used when results need to be presented in ascending or descending order;

e S$project renames, includes (1) or excludes (0) certain attributes from being present in the
query result.

For example, if we need to get the number of unique organisations publishing data, the executed

guery has the following form:

db.odm.aggregate([
{"$match”: {"organization.title": {"$nin": ["",None]}}}.
{"$group”: { "_id": "$catalogue_url", “unique_org_size":
{"$addToSet": "$organization.title® }}},
{"$unwind” :"$unique_org_size"},
{"$group® : {"_id" : "$_id", “counter® : {"$sum” : 1}}},
{"$sort™: { "counter®: -1 }}
D

3.7 Administration Panel

This component will comprise dashboards for allowing the ODM system administrator to monitor,
configure and control the various operations of the platform, such as checking the status of
harvesting jobs, viewing statistics of the harmonisation process, configuring mappings, etc. This will
also allow for a manual curation of the metadata collection if and when needed, identifying incorrect

results and configuring the process accordingly.

The design and implementation of this component is planned for the second period of the project

and will be reported in Deliverable D3.6.

© 2014 OpenDataMonitor | FP7-ICT 611988 29

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 1

3.8 Demonstration Site

The Demonstration Site comprises a set of components that are responsible for generating various
visualisation and reports that will allow the end user to obtain a comprehensive overview of the

monitored open data catalogues, based on a set of key metrics that have been identified.

An overview of the metrics that have been selected for monitoring, as well as a survey of appropriate
visualisations techniques to help convey the analysis results to the end users, have been presented in
Deliverable D2.3. The current status of the implementation of this module is reported in Deliverable
D3.4.

© 2014 OpenDataMonitor | FP7-ICT 611988 30

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 1

4 CONCLUSIONS AND NEXT STEPS

In this report, we have first presented the overall architecture and the processing workflow for the
ODM system, and then we have described the status of the implementation of the main components

of the platform. The progress of the work is summarised below"’:

e (Catalogue registry. We have implemented a web-based user interface for allowing the ODM
administrator or a user with the data publisher role to register new catalogues for
monitoring. This involves providing some basic information that is used to configure a
harvesting job to collect metadata records for this catalogue. Essentially, this refers to
distinguishing between catalogues that are deployed on CKAN, in which case metadata can
be harvested by leveraging the CKAN API, and those for which metadata are collected via
HTML scraping. For the latter, some information needs to be provided to guide the
extraction process from the HTML pages. To reduce the burden for the user, when
configuring a new catalogue, existing configurations of previously registered catalogues are
checked and reused whenever possible. The goal for the second period is to examine ways
to further reduce the manual input required for registering a new catalogue.

e Job manager. We have implemented a component that, given as input the configurations of
the registered catalogues, creates and manages corresponding harvesting jobs. This is based
on a queue for scheduling these tasks and monitoring their status and progress. At the
current stage, harvesting jobs are scheduled for execution manually. The plan for the second
period involves deploying this component as a background process that can schedule jobs
periodically, as well as providing a visual interface and statistics regarding the execution of
these jobs.

e Metadata harvester. For this component we have addressed two cases: harvesting metadata
from CKAN catalogues and extracting metadata via HTML scraping. Applying these methods
to collect metadata from several open data catalogues is an ongoing process. Based on these
results, we will determine any improvements that can be made to improve the accuracy of
this process, e.g. how to better configure/learn extraction rules or whether there is a need
to develop other types of harvesters to address specific cases.

e Metadata repository. A MongoDB database has been setup to store the collected metadata
records. Each record is stored as a JSON document, and two different collections are
maintained, one comprising the raw metadata extracted by the harvester and one
comprising the metadata after their harmonisation.

e Harmonisation engine. For this component, we have implemented a set of scripts for
performing data cleaning and transformations. This involves mapping the collected
metadata from their original schemas to an internal representation comprising the
attributes that are needed to compute the selected metrics for monitoring. It also involves

" A code repository has been setup on GitHub, where the code will be made available during the course of the
project: https://github.com/opendatamonitor

© 2014 OpenDataMonitor | FP7-ICT 611988 31

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 1

value mapping and translation for those attributes so that further analysis can be
performed. This task has focused on attributes such as licence types, file formats, sizes and
dates. Resolving spatial attributes and harmonizing dataset categories is the focus of the
current work. The goal for the second period is to improve the accuracy and robustness of
these processes while reducing the amount of manual curation required (for defining
mappings and/or validating results).

e Analysis engine. For this component we have implemented: (a) a series of scripts that
compute the specified metrics by executing corresponding queries in the database, and (b) a
RESTful API for providing access to the results of these computations as well as the contents
of the metadata repository in general. Several metrics have already been implemented and
are at the stage of testing as more metadata are collected by the harvester. The current
code base will be extended in the second period to compute additional metrics, both from
the ones already identified but currently pending because the harmonisation of involved
attributes is not completed as well as others that may be identified in the course of the
project.

e Administration panel. The implementation of this component will take place in the second
period. Its purpose will be to provide a graphical user interface to facilitate the ODM
administrator to monitor and control various aspects of the system and the processing
workflow.

e Demonstration Site. The progress of the work for this component is reported in Deliverable
D3.4.

© 2014 OpenDataMonitor | FP7-ICT 611988 32

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 1 -

5 REFERENCES

[1] Fielding, Roy T., and Richard N. Taylor. "Principled design of the modern Web architecture." ACM
Transactions on Internet Technology (TOIT) 2.2 (2002): 115-150.

© 2014 OpenDataMonitor | FP7-ICT 611988 33

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *

PROGRAMMING STATUS REPORT 1)

6 APPENDIX

6.1 Example of harvesting job configuration

Table 4: Example of harvesting job configuration for the catalogues publicdata.eu and datos.gob.es

{
"description™ : "',
"title™ - "publicdata_eu",
“"cat_url"™ : "http://publicdata.eu/",
"frequency' : "MANUAL™",
"type'" : "ckan',
"1d" :© "d7158756-58e2-4ch7-8974-c042d12675cT"
+
{
"description™ : "',
"title" : "datos_gob_es",
"cat_url" : "http://datos.gob.es/catalogo?title=&order=&page="",
"frequency' : "MANUAL",
"type" : "html",
"id" : "4e6e4c22-a945-43a0-9450-2e5860e3177f"
+
{
"maintainer”™ : "@/@label"’,
"frequency" : "@/@label™,
""geographic_coverage' : '"Cobertura geografica:@/@label",
"category" : "Categorias:@/@label™,
“license" : "@/@label",
"title" : "@/@value™,
“"next™ - ",
"version'" : "@/@label',
""tags'" : "Etiquetado como:@/@label™,
"step" : "1,
"updatedate'" : "Fecha de ultima actualizacién:@/@label™,
"date"™ : "Fecha de creacién:@/@label",
“"enddate' : "@/@label",
"publisher™ : "Publicador:@/@label™,
"resource' : "Distribuciones@/@link",
“"name' : """,

© 2014 OpenDataMonitor | FP7-ICT 611988

34

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 1 -

"language' : ''spanish",

"url™ - "http://datos.gob.es/catalogo/estadistica-del-impuesto-
de-matriculacion™,

"afterurl™ : "',

""notes" :

"text_fTile.write(str(soup2.ftind_all("html*,recursive=False)[0]-find_
all("body",recursive=False)[0].find_all(*div~,recursive=False)[1].Ti
nd_all("div®,recursive=False)[1]-find_all("div",recursive=False)[0].
find _all("div®,recursive=False)[5]-find all("div*,recursive=False)[O0
J-find_all("div™,recursive=False)[0].find_all(*div",recursive=False)
[O].Ffind all(*div™,recursive=False)[1].find all(*div~,recursive=Fals
e)[0]-find_all("div*",recursive=False)[0].find_all("div",recursive=Fa
Ise)[0].find all("div",recursive=False)[0].find all(*div",recursive=
False)[O0]-find_all("div",recursive=False)[0].find_all("div",recursiv
e=False)[1]-find all(*div",recursive=False)[1].-find all(*div",recurs
ive=False)[0]-find_all("div",recursive=False)[1]-find_all("div",recu
rsive=False)[0].getText() .encode("utf-
8").Istrip().rstrip()))e/evalue™,

""temporal _coverage™ : '"Cobertura temporal:@/@label’,

“"cat_url™ : "http://datos.gob.es/catalogo?title=&order=&page="",

contactpoint™ : "@/@label™,

"identifier"” : "/catalogo/",

“type"™ : "html™

6.2 Example of raw collected metadata

Table 5: JSON document containing the metadata of a dataset returned by the CKAN Harvester

{
" id" : Objectld('5397f1lb2ce2e3b6ff6ba92b7'"),
“"license_title™ : "UK Open Government Licence (OGL)",
"maintainer”™ : null,
“private” : false,
"maintainer_email” : null,
"num_tags™ : 6,
"id" : "c580285c-0dd1-4b7f-abld-c733a51e9f41",
"metadata_created™ : '"2011-06-13T19:25:51.144044",
"relationships™ : [1,
“"license™ : "UK Open Government Licence (OGL)™,
"metadata modified" : "2011-06-13T19:25:51.912066",

© 2014 OpenDataMonitor | FP7-ICT 611988 35

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 1 -

"author™ : null,
"author_email™ : null,
“download url™ : "http://www.gro-

scotland.gov.uk/statistics/publications-and-data/population-
estimates/mid-2007-population-estimates-scotland/index.html™,
"platform™ : "ckan",
"state" : "active",
"version'" : null,
creator_user_id" : null,
"type" : "dataset”,
"resources™ : [
{
“resource_group_id"™ : 'c3954e€94-44eb-4986-93f4-
6b46F5665e6T"",
"*cache_ last updated™ : null,
"package_id" : ''c580285c-0dd1-4b7f-abld-c733a51e9f41",
"webstore last updated™ : null,
"id" : "7bcb438b-0el5-4e44-94cf-aabd97dal602",
"size" : null,
"‘openness_score' : 0",
"hash™ :© ",
"description” : "hub/id/119-32178",
“"format"™ : "',
"last_modified" : null,
"openness_score_failure _count™ : 0",
"url_type"™ : null,
openness_score_reason' : "URL unobtainable™,
"mimetype™ : null,
*cache url' : null,
"name' : null,
"created" : null,
"url™ - "http://www.gro-
scotland.gov.uk/statistics/publications-and-data/population-
estimates/mid-2007-population-estimates-scotland/index.html"",

"webstore url™ : null,
"mimetype_inner™ : null,
"position™ : O,
"resource_type'" : null

© 2014 OpenDataMonitor | FP7-ICT 611988 36

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 1 -

"num_resources" : 1,

"tags" : [
"lifeinthecommunity",
"population,
"populationandmigration™,
"populationchange",
"populationestimates™,

"scotland"

1.

"catalogue_url"™ : "http://publicdata.eu’,

“groups™ : [],

"license_id" : "UK Open Government Licence (OGL)",

organization™ : null,

"name" : "mid-year_population_estimates_for_scotland_-_ mid-
2007,

"“isopen™ : true,

"notes_rendered"” : "<p>Presents key findings from the Registrar

General"s Annual Review.\n Source agency: General Register Office
for Scotland\n Designation: National Statistics\n Language:
English\n Alternative title: Scotland®"s Population: The Registrar
General s Annual Review of Demographic Trends\n</p>",

“url™ : null,

“ckan_url™ : "http://publicdata.eu/dataset/mid-
year_population_estimates_for_scotland_-_ mid-2007",

"notes"™ : "Presents key findings from the Registrar General"s
Annual Review.\r\nSource agency: General Register Office for
Scotland\r\nDesignation: National Statistics\r\nLanguage:
English\r\nAlternative title: Scotland"s Population: The Registrar
General"s Annual Review of Demographic Trends',

"owner_org"™ : null,

“ratings_average™ : null,

"extras" : {
“"eu_country' : "UK",
"temporal_coverage-from™ : "',
"date_updated™ : ',
"published_via" : "General Register Office for Scotland

[12077]",

"temporal_coverage_to™ : "',
“"import_source™ : "ONS-ons data 2008-07",
""geographical_granularity”™ : "Country',

© 2014 OpenDataMonitor | FP7-ICT 611988 37

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor &
PROGRAMMING STATUS REPORT 1 -

"‘openness_score' : "0",

"temporal_granularity™ : "',

Yfagency' : "General Register Office for Scotland®,
""geographic_granularity™ : "',

"temporal coverage-to™ : ",

"department' : "'Scottish Government',

"harvest dataset url' :
"http://catalogue.data.gov.uk/package/c580285c-0dd1-4b7f-abld-
c733a51e9f41",

"precision™ I "',

""temporal coverage from™ : ',

"published_by"™ : "Scottish Government [11414]",

taxonomy url™ : 7,

"harvest_catalogue url"™ : "http://catalogue.data.gov.uk",

‘categories™ : "Population®,

""geographic_coverage'™ : "010000: Scotland",

"external _reference”™ : "ONSHUB',

"harvest_catalogue_name™ : "Data.gov.uk',

"national statistic” : "yes",

""openness_score_last_checked" : "2011-06-
06T17:24:21.335775",

"update_frequency' : "annual',

"date_released” : 1SODate(’'2008-07-24T00:00:00.000Z")

}.

“"license_url"” : "http://reference.data.gov.uk/id/open-
government-licence",

“ratings _count™ : O,

"title" : ""Mid-Year Population Estimates for Scotland - Mid-
2007,

"revision_id" : "e967ael5-ba55-4d30-89b9-4ba4c3520456™

}

Table 6: JSON document containing the metadata of a dataset returned by the HTML Harvester

" 1d" I Objectld('53b2ddlcce2e3b6a70b7ce70™),

"name" : '"3525a92ab605e5ac41892b15f8ea301c™,

"title" : "Directorio de la Administracion General e
Institucional de la Comunidad datos.gob.es™,

“url™ : "http://datos.gob.es//catalogo/directorio-de-

© 2014 OpenDataMonitor | FP7-ICT 611988 38

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor *
PROGRAMMING STATUS REPORT 1 -

administracion-general-institucional-de-comunidad-10",

"notes" : "Conjunto de 6rganos administrativos, centrales y
territoriales que desarrollan funciones ejecutivas de caracter
administrativo. Incluye Consejerias, Direcciones Generales,
Delegaciones Territoriales, asi como Organismos Autdénomos y Entes
Publicos.",

“catalogue url™ : "http://datos.gob.es™,
"platform™ : "html",
“"extras"™ : {
"Geographic Coverage"™ : "Castilla y Leb6n",
"Release Date"™ : 1SODate(''2012-04-19T00:00:00.000Z2"),
"Language' : 'Espafol™
3,
"resources”™ : [
{
"url™ :

“http://www.datosabiertos. jcyl.es/web/jcyl/risp/es/directorio/admini
stracion-general/1284217430398.csv",

"mimetype' : "text/csv;charset=150-8859-15",
"name' : "Distribuciones",
“format" : "'CSV"
}s
{
“url™ :

“http://www.datosabiertos. jcyl.es/web/jcyl/risp/es/directorio/admini
stracion-general /1284217430398 .xml"",

"mimetype’” : "application/xml;charset=UTF-8",
"name' : "Distribuciones",
"format™ : "XML™
}.
{
"url™ :

“http://www.datosabiertos. jcyl.es/web/jcyl/risp/es/directorio/admini
stracion-general/1284217430398.rdf",

"mimetype’ : "application/rdf+xml;charset=UTF-8",
"name'" : "Distribuciones",
"format"™ : "RDF"

© 2014 OpenDataMonitor | FP7-ICT 611988 39

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor t
PROGRAMMING STATUS REPORT 1

6.3 Dictionary for harmonising licences

Table 7: Dictionary for licences cleaning and harmonisation

e CC BY [Creative Commons Attribution (CC-BY); Creative Commons BY; creative-commons-
attribution-cc-by; cc-by; Creative Commons Attribution; Creative Commons Attribution License 3.0;
Creative Commons Attribuzione; CreativeCommons Attribution 3.0 (CC-BY-3.0); Internet CC-BY;
Creative Commons Reconocimiento 3.0 Espafia]

e CC BY-SA [Creative Commons Attribution Share-Alike; Creative Commons Attribution-ShareAlike
3.0 Italy; Creative Commons Attribuzione - Condividi allo stesso modo; naamsvermelding---gelijkdelen-
cc-by-sa]

e CC BY-ND [cc-nd]

e CC BY-NC [cc-nc; Creative Commons Non Commerciale (Qualsiasi tipo); Creative Commons Non-
Commercial (Alle); Creative Commons Non-Commercial (Any)]

e CC BY-NC-SA [CCBY-NC-SA 3.0; Creative Commons Attribution Non-Commercial Share-Alike]

e CC BY-NC-ND [Creative Commons Attribution Non-Commercial Non-Derivative]

e CCO [Creative Commons CCZero (CCO); cc-zero; CCO 1.0 Universal; Creative Commons 0 apart from
images; Creative Commons CCZero Public Domain; Creative Commons Zero (CCO); Public Domain
Dedication; Internet CCOJ

e GPLV2 [gpl-2.0]

e GPLvV3 [gpl-3.0]

e ODC-BY [Open Data Commons Attribution License]

e ODC-ODbL [Open Data Commons Open Database License (ODbL); Open Database License (ODbL)]
e ODC-PDDL [Open Data Commons Public Domain Dedication and Licence (PDDL)]

e GFDL [GNU Free Documentation License]

e OSL [osl-3.0; Open Software License]

e 0S OpenData License [0S Open Data Licence; Ordnance Survey Open Data Licence]

e 0OS Open Government Licence [Ordnance Survey Open Government Licence; Open
Government License apart from images]

e OS Public Sector End User Licence — INSPIRE [Ordnance Survey Public
Sector Inspire End User Licence]

e PSMA [Public Sector Mapping Agreement]

e UK Crown [UK Crown Copyright; ukcrown-withrights]
e OGL [UK Open Government Licence; uk-ogl]

e Against DRM

e DL-DE-BY [dl-de-by-1.0; Datenlizenz Deutschland - Namensnennung - Version 1.0]

e DL-DE-BY-NC [dI-de-by-nc-1.0; Datenlizenz Deutschland - Namensnennung — nicht kommerziell -
Version 1.0]

e |10DL v1.0 ([italian Open Data License 1.0; Italian Open Data License v1.0; IODL-1.0; iodl1]

e IODL v2.0 ([italian Open Data License 2.0; Italian Open Data License v2.0; I0DL-2.0; iodI2]

e Licence Ouverte [Licence Ouverte / Open Licence]

e Other (Non-Commercial) [Altro (Non Commerciale); Ostatni (Licence pro nekomeréni

© 2014 OpenDataMonitor | FP7-ICT 611988 40

D3.3 TOOL ARCHITECTURE AND COMPONENTS/PLUGINS OpenDataMonitor f
PROGRAMMING STATUS REPORT 1 '-

vyuZiti); other-nc]

e Other (Attribution) [Altro(con Attribuzione); Andere (Namensnennung); Annet
(navngivelse); other-at]

e Other (Open) [Altro (ditipo Open); Andere (Offen); Annet (Gpen); Ostatni (Otevrend licence);
other-open]

e Other (Not Open) [Annet (ikke Gpen); Ostatné (zatvorend licencia); other-closed]

e Other (Public Domain) [Andere (gemeinfrei); Annet (public domain); Otra (Public
Domain); other-pd; publiek-domein; Ocmaso (JasHu domeH)]

¢ Non-Commercial Government Licence v1.0 [Non-Commercial Government
Licence v1.0]

e INTEL OSL ([intel-osl]

e Private [Datasetis not available for publication as the content is sensitive]

e License Not Specified [Licence neniuvedena; Licentie is niet gespecificeerd; Licenza non
specificata; Lisens ikke angitt; Lizenz nicht angegeben; Nie je uvedend licencia; Not specified;
Other::License Not Specified; notspec; notspecified; See website dataset provider]

© 2014 OpenDataMonitor | FP7-ICT 611988 41

